Regulations for PG Programs in Engineering (R22PG) (Effective from 2022-23) M. Tech (R22) Syllabus Geotechnical Engineering

Kandula Srinivasa Reddy Memorial College of Engineering (Autonomous)

Kadapa-516005. AP (Approved by AICTE, Affiliated to JNTUA, Ananthapuramu, Accredited by NAAC) (An ISO 9001-2008 Certified Institution)

Annexure – 1 Curriculum Geotechnical Engineering (Civil Engineering)

	1 st Semes	ster							
S. No.	Course Codes	Course Name	Category	L	Т	Р	IM	EM	Credits
1	2212101	Advanced Soil Mechanics	PCC	3	0	0	40	60	3
2	2212102	Advanced Foundation Engineering	PCC	3	0	0	40	60	3
3		Program Elective Course – I	PEC	3	0	0	40	60	3
	2212103	Soil Structure Interaction							
	2212104	Ground Improvement Techniques							
	2212105	Geoenvironmental Engineering							
4		Program Elective Course – II	PEC	3	0	0	40	60	3
	2212106	Critical Soil Mechanics							
	2212107	FEM in Geotechnical Engineering							
	2212108	Pavement Analysis and Design							
5	2212109	Soil Mechanics – 1 Lab	PCC	0	0	4	50	50	2
6	2212110	Soil Mechanics – 2 Lab	PCC	0	0	4	50	50	2
7	2212111	Research Methodology & IPR	-	2	0	0	40	60	2
8		Audit Course – I	Audit	2	0	0	40	0	0
				16	0	8	340	400	18

2nd Semester

S. No.	Course Codes	Course Name	Category	L	Т	Р	IM	EM	Credits
1	2212201	Experimental Geomechanics	PCC	3	0	0	40	60	3
2	2212202	Earth Retaining Structures	PCC	3	0	0	40	60	3
3]	Program Elective Course – III	PEC	3	0	0	40	60	3
	2212203	Dynamics of Soil and Foundations							
	2212204	Foundations on Expansive Soils							
	2212205	Offshore Geotechnical Engineering							
4]	Program Elective Course – IV	PEC	3	0	0	40	60	3
	2212206	Design of Under Ground Excavations							
	2212207	Design with Geosynthetics							
	2212208	Geotechnical Earthquake Engineering							
5	2212209	Subsoil Exploration Lab	PCC	0	0	4	50	50	2
6	2212210	Geotechnical Engineering Modeling Lab	PCC	0	0	4	50	50	2
7	2212211	Technical Seminar	-	0	0	4	100	0	2
8		Audit Course – II	Audit	2	0	0	40	0	0
				14	0	12	400	340	18

3rd Semester

	5 Built	5001							
S. No.	Course Codes	Course Name	Category	L	Т	Р	IM	EM	Credits
1		Program Elective Course – V							
	2212301	Stability Analysis of Slopes	PEC	3	0	0	40	60	3
	2212302	Foundations on Weak Rocks							3
	2212303	Computational Geomechanics							
2		Open Elective	OEC	3	0	0	40	60	3
3	2212307	Dissertation Phase – 1 (to be continued nest semester)	Project	0	0	20	100	0	10
4	2212308	Co-Curricular Activities		0	0	0	0	0	2
				6	0	20	180	120	18

4th Semester

S. No.	Course Codes	Course Name	Category		Т	Р	IM	EM	Credits
1	2212401	Dissertation Phase – 2	Project	0	0	32	50	50	16
				0	0	32	50	50	16

List of Audit Courses offered:

Course Codes	Course Name
2270A01	English for Research Paper Writing
2270A02	Disaster Management
2270A03	Sanskrit for Technical Knowledge
2270A04	Value Education
2270A05	Constitution of India
2270A06	Pedagogy Studies
2270A07	Stress Management by Yoga
2270A08	Personality Development through
	Life Enlightenment Skills

List of Open Elective Courses offered to other branch students:

Course Codes	Course Name
220E121	Solid Waste Management
220E122	Waste to Energy
220E123	Sub soil exploration techniques

I Semester Syllabus

M. Tech., I Semester

Course Title	Advai	nced	Soil I	Mech	nanics	M. Tech, I Semester					
Course Code	Category	Hou	ırs/W	eek	Credits	Maximum Marks					
2212101	Professional Core (PCC)	L	Т	Р	С	ContinuousEndInternalExamAssessmentInternal					
		3	0	0	3	40	60	100			
Mid Exam Duration: 2 Hrs. End Exam Duration: 3 Hrs.											
• To co	nditions, analy	the co ze th	onsoli e stre	datior ess pa	theory, streng ths for differe	th behaviour of soil ent practical situation lastic deformations in	ns, study				
On succe	ssful completio	on of t	this co	ourse,	, the students v	will be able to					
CO 1	Determination	n of co	onsoli	dation	properties						
CO 2	Determine th results	e she	ar str	ength	properties and	d interpretation of t	he triaxi	al test			
CO 3	Draw the stres	Draw the stress paths for drained and undrained conditions of the soil mass									
CO 4	Determine the	critic	cal sta	te par	ameters of the s	soils					

CO 5 Understand the elastic and plastic deformations

<u>UNIT-I</u>

Compressibility of Soils

Consolidation theory (one, two, and three dimensional consolidation theories), consolidation in layered soil and consolidation for time dependent loading, determination of coefficient of consolidation (Casagrande method and Taylors method)

UNIT-II

Strength Behavior of Soils

Mohr Circle of Stress; UU, CU, CD tests, drained and undrained behavior of sand and clay, significance of pore pressure parameters; determination of shear strength of soil; Interpretation of triaxial test results.

<u>UNIT-III</u>

Stress Path

Drained and undrained stress path; Stress path with respect to different initial state of the soil; Stress path for different practical situations.

UNIT-IV

Critical State Soil Mechanics

Critical state parameters; Critical state for normally consolidated and over consolidated soil; Significance of Roscoe and Hvorslev state boundary surface; drained and undrained plane. critical void ratio; effect of dilation in sands; different dilation models.

UNIT-V

Elastic and Plastic Deformations

Elastic wall; introduction to yielding and hardening; yield curve and yield surface, associated and non-associated flow rule.

Text books:

- 1. Das, B.M., Advanced Soil Mechanics, Taylor and Francis, 5th Edition, 2019.
- 2. Terzaghi, K., and Peck, R.B., Soil Mechanics in Engineering Practice, John Wiley & Sons, 1996.

- 1. Atkinson, J.H. and Bransby, P.L, The Mechanics of Soils: An Introduction to Critical Soil Mechanics, McGraw Hill, 2013.
- 2. Wood, D.M., Soil Behavior and Critical State Soil Mechanics, Cambridge University Press, 1991.

M. Tech., I Semester

Course Title	Advanced	Foun	datio	on En	M. Tech, I Semester				
Course Code	Category	Hou	ırs/W	eek	Credits	Maximum Marks			
2212102	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	0	0	3	40	60	100	
Mid Exa	n Duration: 2	Hrs.	End Exam Duration: 3 Hrs.						

Course Objectives: The course is designed to students,

- To emphasize the importance of soil investigations including destructive and nondestructive methods
- To explain the concept of bearing capacity and how to estimate the safe bearing capacity for various foundation system including settlement consideration
- To explain the need and how do analysis the pile and pile group under various soil conditions
- To explain the concepts of Terzaghi and IRC Methods and individual components
- To analyze the foundations under uplifting loads

On succe	On successful completion of this course, the students will be able to								
CO 1	Prepare the exploration report and bring the correlations between the soil								
	properties								
CO 2	Design the footing and estimating the bearing capacity for various theories								
CO 3	Estimate the load capacity, group action and settlement by various methods								
CO 4	Design the well foundation and its components								
CO 5	Design the foundations for uplifting loads								

<u>UNIT-I</u>

Compressibility of Soils

Planning of Soil Exploration

Planning of Soil Exploration for Different Projects, Methods of Subsurface Exploration, Methods of Borings Along with Various Penetration Tests

<u>UNIT-II</u>

Compressibility of Soils

Shallow Foundations

Requirements for Satisfactory Performance of Foundations, Methods of Estimating Bearing Capacity, Settlements of Footings and Rafts, Proportioning of Foundations Using Field Test Data, IS Codes.

UNIT-III

Compressibility of Soils

Pile Foundations

Methods of Estimating Load Transfer of Piles, Settlements of Pile Foundations, Pile Group Capacity and Settlement, Negative Skin Friction of Piles, Laterally Loaded Piles, Pile Load Tests, Analytical Estimation of Load- Settlement Behavior of Piles, Proportioning of Pile Foundations, Lateral and Uplift Capacity of Piles.

UNIT-IV

Compressibility of Soils Well Foundation IS and IRC Codal Provisions, Elastic Theory and Ultimate Resistance Methods

<u>UNIT-V</u>

Compressibility of Soils Coffer Dams Various Types, Analysis and Design Foundations under Uplifting Loads

Text Books:

- 1. Bowles. J.E., Foundation Analysis and Design, Tata McGraw-Hill International Edition, 5th Edition, 1997.
- 2. Das B.M., Shallow Foundations: Bearing capacity and settlement, CRC Press, 2017.

- 1. Tomlinson M.J., Pile design and construction Practice, Chapman and Hall Publication, 2008.
- 2. Poulos, H. G. and Davis, F. H., "Pile Foundation Analysis and Design", Wiley and Sons. 1980.

M. Tech., I Semester

Course Title	Soil St	ructi	ıre I	ntera	ction		M. Tech, I Semester					
Course Code	Category	Category Hours/Week Credits Maximum Marks										
2212103	Professional Elective (PEC)	L	Т	Р	С		Inte	inuous ernal ssment	End Exam	Total		
		3	0	0	3		2	40	60	100		
Mid Exa	Mid Exam Duration: 2 Hrs. End Exam Duration: 3 Hrs.											
 To To To To 	bjectives: The study the soil a analyze the be analyze the pla analyze the pil analyze the pil	and fo ams o ates or les on	oundat n elas n elas elasti	ion be stic fou tic med c med	haviour Indations dium ium	nts,						
	ssful completio	-		-		nts v	vill be ab	le to				
CO 1	Apply different	ent so	oil re	sponse	e models	for	specific	problems	based of	on the		
CO 2	Analyze the fo	ooting	s on e	elastic	foundation	18						
CO 3	Analyze the p	lates o	on ela	stic for	undations							
CO 4	Analyze the p	iles oi	n elas	tic ana	lysis and t	heir	settlemen	t				
CO 5	<u>a</u>	Compute pile response for various loading conditions for design purpose										

<u>UNIT-I</u>

Soil-Foundation Interaction

Introduction to soil-foundation interaction problems, Soil behavior, Foundation behavior, Interface behavior, Scope of soil foundation interaction analysis, soil response models, Winkler, Elastic continuum, Two parameter elastic models, Elastic plastic behavior, Time dependent behavior.

UNIT-II

Beam on Elastic Foundation - Soil Models

Infinite beam, Two parameters, Isotropic elastic half space, Analysis of beams of finite length, Classification of finite beams in relation to their stiffness.

UNIT-III

Plate on Elastic Medium

Thin and thick plates, Analysis of finite plates, Numerical analysis of finite plates, simple solutions.

UNIT-IV

Elastic Analysis of Pile

Elastic analysis of single pile, Theoretical solutions for settlement and load distributions, Analysis of pile group, Interaction analysis, Load distribution in groups with rigid cap.

UNIT-V

Laterally Loaded Pile

Load deflection prediction for laterally loaded piles, Subgrade reaction and elastic analysis, Interaction analysis, Pile-raft system, Solutions through influence charts. An introduction to soil-foundation interaction under dynamic loads.

Textbooks:

- 1. Selvadurai, A.P.S, Elastic Analysis of Soil-Foundation Interaction, Elsevier, 1979.
- 2. Poulos, H. G. and Davis, F. H., "Pile Foundation Analysis and Design", Wiley and Sons. 1980

- 1. Structure Soil Interaction State of Art Report, Institution of Structural Engineers, 1978.
- 2. Hemsley, J.A, Elastic Analysis of Raft Foundations, Thomas Telford, 1998.

M. Tech., I Semester

Course Title	Ground Ir	npro	veme	ent Te	chniques	M. Tech, I Semester						
Course Code	Category	Hours/Week Credits				Maximum Marks						
2212104	Professional Elective (PEC)	L	T	Р	С	Continuous Internal Assessment	End Exam	Total				
		3	0	0	3	40	60	100				
Mid Exa	m Duration: 2	2 Hrs.				End Exam D	uration: 3	Hrs.				
• T	Objectives: The o study the vaneir application	arious		U		arth reinforcement	techniques	and				
On succ	essful completi	ion of	this c	course	, the students	will be able to						
CO 1	Understand t	he me	echani	cal mo	dification and	their importance						
CO 2	Understand t	Juderstand the chemical modification and their importance										
~~ ~ ~						-						

CO 3	Understand the thermal modification and their importance

CO 4 Understand the mechanism of soil reinforcement and types of reinforcement

CO 5 Understand the applications of reinforcement, analysis and design

UNIT-I

Mechanical Modification

Dynamic compaction, impact loading, compaction by blasting, vibro-compaction; precompression, stone columns; Hydraulic modification: dewatering systems, preloading and vertical drains, electro-kinetic dewatering

<u>UNIT-II</u>

Chemical Modification

Modification by admixtures, stabilization using industrial wastes, grouting

<u>UNIT-III</u>

Thermal Modification

Ground freezing and thawing.

<u>UNIT-I</u>V

Soil Reinforcement

Reinforced earth, basic mechanism, type of reinforcements, selection of stabilization / improvement of ground using Geotextiles, Geogrid, geomembranes, geocells, geonets, and soil nails.

UNIT-V

Application of Soil Reinforcement

Shallow foundations on reinforced earth, design of reinforced earth retaining walls, reinforced earth embankments structures, wall with reinforced backfill, analysis and design of shallow foundations on reinforced earth, road designs with geosynthetics

Textbooks:

- 1. Hausmann, M.R., Engineering Principles of Ground Modification, McGraw-Hill International Editions, 2013.
- 2. Moseley, M.P., Ground Improvement, Blackie Academic & Professional, 2004.

- 1. Xanthakos, P.P., Abramson, L.W. and Bruce, D.A., Ground Control and Improvement, John Wiley & Sons, 1994.
- 2. Koerner, R. M., Designing with Geosynthetics, Prentice Hall Inc. 2012.

M. Tech., I Semester

Course Title	Geoenvir	onm	ental	Eng	M. Tech, I Semester			
Course Code	Category	Hours/Week Credits Maximum M					Marks	
2212105	Professional Elective (PEC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
Mid Exa	m Duration: 2	Hrs.	1			End Exam Du	iration: 3	Hrs.
Course (Objectives: The	e cour	se is c	lesign	ed to students,			

- To learn concepts of geo-environmental engineering, and planning and design of waste in landfills, ash ponds and tailing ponds.
- Explain the effects of pollutants in soil properties
- Awareness about the adverse effects of soil and ground water contaminants
- Analyze and apply the various techniques for remediation of the contaminants

On succe	On successful completion of this course, the students will be able to							
CO 1	Understand the soil-environment interaction and contaminants							
CO 2	Design the landfill and its stability							
CO 3	Identify the slurry waste, design the slurry ponds and its operations							
CO 4	Identify the contaminated sites and design the barriers							
CO 5	Identify the properties of the waste and reuse the material							

<u>UNIT-I</u>

Introduction and Contamination

Industrialization and Urbanization, Pollution, Control and remediation. Surface contamination, Contamination transport, Soil-a Geotechnical trap, Effect of subsurface contamination, Detection of polluted zone, Monitoring and Effectiveness of designed facilities.

<u>UNIT-II</u>

Contaminants of Solid Waste in Landfills

Waste contaminants, landfills, types, shape and size of landfills. Liner and liner system, Cover and cover system, Stability of landfills. Landfill construction & operation, sustainable waste management.

UNIT-III

Contaminants of Slurry Wastes

Slurry transported wastes, slurry ponds, operation, Embankment construction and raising, Design aspects, Environmental Impact and control.

UNIT-IV

Vertical Barriers for Contaminant

Contaminated sites, Types of barriers, Soil-Bentonite slurry trench walls, Cement-Bentonite slurry trench walls, construction, material and design aspects.

<u>UNIT-</u>V

Geotechnical Reuse of Waste Materials

Waste reduction, use in geotechnical construction, waste characteristics, transportation consideration, Engineering properties of Wastes, Waste material in Embankment and Fills.

Textbooks:

- 1. Geo-environmental Engineering by Sharma H.D & Reddy K.R, John Wiley & Sons, Inc, 2004.
- 2. Geo-environmental Engineering by Reddi L.N & Inyang. H.I, CRC Press, 2000.

- 1. Geotechnical Geo Environmental Engineering hand Book Kerry Row, Springer Science, New York, 2001.
- 2. Ground Water Contamination: Bedient, Refai & Newell, Prentice Hall Publishers, 1999.

M. Tech., I Semester

Course Title	Criti	ical S	Soil N	ſecha	M. Tech, I Semester			
Course Code	Category	Hours/Week Credits Maximu				m Marks		
2212106	Professional Elective (PEC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
Mid Exa	m Duration: 2	Hrs.				End Exam D	uration: 3	Hrs.
	Objectives: The			U				
						x properties and tes		

- To demonstrate basic mechanisms behind index properties and tests on son, relate behaviour of soils subjected to various loading and drainage conditions within unified framework of Critical state soil mechanics.
- To analyze theory of elasticity and plasticity to characterize the stress strain behaviour of soils and to formulate basic elasto-plastic model based on Critical State Soil Mechanics (CSSM) like Cam-clay

On succe	ssful completion of this course, the students will be able to
CO 1	Understand the behaviour soil under various stress strain conditions
CO 2	Determine the critical state line for various drained conditions
CO 3	Understand the behaviour of over consolidated soils
CO 4	Understand the behaviour of sands in critical state
CO 5	Understand the behaviour of sails before failure by constructing elasto-plastic
	model

<u>UNIT-</u>1

Soil Behavior

State of Stress and Strain in Soils, Stress and Strain Paths and Invariants, Behavior of Soils under Different Laboratory Experiments

<u>UNIT-</u>1I

The Critical State Line and the Roscoe Surface

Families of Undrained Tests, Families of Drained Tests, The Critical State Line, Drained and Undrained Surfaces, The Roscoe Surface

<u>UNIT-</u>1II

Behavior of Over Consolidated Samples

The Hvorslev Surface: Behaviour of Over Consolidated Samples, Drained and Undrained Tests, The Hvorslev Surface, Complete State Boundary Surface, Volume Changes and Pore Water Pressure Changes

<u>UNIT-</u>1V Behaviour of Sands

The Critical State Line for Sands, Normalized Plots, The Effect of Dilation, Consequences of Taylor's Model

<u>UNIT-</u>V

Behaviour of Soils before Failure

Elastic and Plastic Deformations, Plasticity Theory, Development of Elastic-Plastic Model Based on Critical State Soil Mechanics, The Cam-Clay Model, The Modified Cam-Clay Model

Textbooks:

- 1. J. H. Atkinson and P. L. Bransby, "The Mechanics of Soils: An Introduction to Critical State Soil Mechanics", Mcgraw Hill, 1978
- 2. Wood, D.M., Soil Behavior and Critical State Soil Mechanics, Cambridge University Press, 1991

- 1. B. M. Das, "Fundamental of Geotechnical Engineering", Cengage Learning, 2013
- 2. Das, B.M., Advanced Soil Mechanics, Taylor and Francis, 5th Edition, 2019.

M. Tech., I Semester

Course Title	FEM in G	eotec	hnic	al Eng	M. Tech, I Semester							
Course Code	Category	Hours/Week Credits				Maximun	Maximum Marks					
2212107	Elective L I P C Inter		Continuous Internal Assessment	End Exam	Total							
		3	0	0	3	40	60	100				
Mid Exa	am Duration: 2	Hrs.				End Exam D	uration: 3	Hrs.				
• T • T • T	o analyze the d	asic c rincip isplac	oncep les an	ts of F d form ts and	EM ulation of var explain the pro	iational methods oblems in soils and r cal engineering	ocks					
On succ	essful completi	on of	this c	course	, the students	will be able to						
CO 1	Understand t	he be	haviou	ır soil	under various	stress strain condition	ons					
CO 2	Determine th	e crit	ical st	ate line	e for various d	rained conditions						
CO 3	Understand t	he be	haviou	ur of o	ver consolidat	ed soils						
CO 4	** 1 1	Understand the behaviour of over consolidated soils Understand the behaviour of sands in critical state										

CO 5 Understand the behaviour of sails before failure by constructing elasto-plastic model

<u>UNIT-</u>I

Basic Concepts

Basic concepts - Discretization of continuum, typical elements, the element characteristic matrix, Element assembly and solution for unknowns - Applications.

<u>UNIT-</u>II

Variational Principles

Variational principles, variational formulation of boundary value problems, Variational methods approximation such as Ritz and weighted residual (Galerkin) methods, Applications.

<u>UNIT-</u>III

Displacements Based Elements

Displacements based elements, finite elements for axial symmetry. One-dimensional problems of stress, deformation and flow, Assembly, Convergence requirements, Finite elements analysis of two-dimensional problems. The linear and quadratic triangle, Natural coordinates.

<u>UNIT-</u>1V

Iso-Parametric Formulation

Application of FEM to Problems in soils and rocks, Introduction to non-linearity, Finite difference method, Description and application to consolidation, seepage, Winkler foundation etc.,

<u>UNIT-</u>V

Applications in Geotechnical Engineering

Application of FEM to Problems in soils, Introduction to non-linearity, Finite difference method, Description and application to consolidation, seepage, Winkler foundations

Textbooks:

- 1. Cook, R.D., Malkus, D.S., and Plesha, M.E., Concepts and Applications of Finite Element Analysis, John Wiley, 2007.
- 2. Smith, I.M., Programming the Finite Element Method with Application to Geomechanics, John Wiley and sons, New Delhi, 2000.

- 1. Reddy, J.N., An Introduction to the Finite Element Method, McGraw Hill, 2005.
- 2. Potts, D.M. and Zdramcovic, L., Finite Element analysis in Geotechnical Engineering Application, Thomas Telford, 2001.

M. Tech., I Semester

Course Title	Paveme	nt An	alysi	is and	M. Tech, I Semester				
Course Code	Category	Hou	Hours/Week Credits			Maximum Marks			
2212108	Professional Elective (PEC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	0	0	3	40	60	100	
Mid Exa	am Duration: 2	Hrs.				End Exam D	uration: 3	Hrs.	
• T		the d	iffere	nt typ	bes of paveme	nts, conduct analys			

systems, design flexible pavements using the AASHTO design procedure, conduct analysis of rigid pavements for stresses, strains, and deflections, To design rigid pavements using the AASHTO design procedure.

On succe	On successful completion of this course, the students will be able to							
CO 1	Identify the various types and components of pavements and design factors							
CO 2	Understand the stress strain behaviour in flexible pavement							
CO 3	Design the flexible pavement for highways and airports							
CO 4	Understand the stress components in rigid pavements							
CO 5	Design the rigid pavement and their components							

<u>UNIT-</u>I

Introduction

Types and component parts of pavements, Factors affecting design and performance of pavements. Highway and airport pavements

<u>UNIT-</u>II

Stresses and Strains in Flexible Pavements

Stresses and strains in an infinite elastic half space use of Boussinesq's equations -Burmister's two layer and three layer theories; Wheel load stresses, various factors in traffic wheel loads; Equivalent single wheel load of multiple wheels. Repeated loads and EWL factors

<u>UNIT-</u>III

Flexible Pavement Design Methods for Highways and Airports

Empirical, semi-empirical and theoretical approaches; Development, principle, design steps of the different pavement design methods including AASHTO, Asphalt Institute, Shell Methods. IRC method of pavement design

<u>UNIT-</u>IV

Stresses in Rigid Pavements

Types of stresses and causes; Introduction to Westergaard's equations for calculation of stresses in rigid pavement due to the influence of traffic and temperature; Considerations in rigid pavement analysis, EWL; wheel load stresses, warping stresses, frictional stresses, combined stresses.

<u>UNIT-</u>V

Rigid Pavement Design

Design of cement concrete pavement for highways and runways; Design of joints, reinforcements, tie bars, dowel bars. IRC method of design; Design of continuously reinforced concrete pavements

Textbooks:

- 1. Yoder R.J and Witchakm. W., Principles of Pavement Design, John Wiley, 2000.
- 2. Yang H Huang Pavement Analysis and Design, 2nd Edition, Pearson Education, 2010.

- 1. Guidelines for the Design of Flexible Pavements, IRC: 37 2001, the Indian Roads Congress, New Delhi.
- 2. Guideline for the Design of Rigid Pavements for Highways, IRC: 58-1998, the Indian Roads Congress, New Delhi.

M. Tech., I Semester

Course Title	Soil	Mec	hani	cs-1 I	M. Tech, I Semester				
Course Code	Category	Hours/Week Credits				Maximum Marks			
2212109	Professional Core (PCC)	L	T	Р	С	Continuous Internal Assessment	End Exam	Total	
		0	0	4	2	50	50	100	
Mid Exa	m Duration: 2	Hrs.		<u> </u>		End Exam Du	iration: 3	Hrs.	
	Objectives: The Classify the soil			U					

• Carryout interpolation among the estimated soil design parameters

On successful completion of this course, the students will be able to

- CO 1 Estimate index and engineering properties of soils (coarse and fine)
- CO 2 Identify the soil classification

List of Experiments:

- 1. Determination of Moisture Content and Specific Gravity
- 2. Grain Size Analysis
- 3. Determination of Atterberg's Limits
- 4. Visual Classification Test for Soils
- 5. Determination of In-Situ Densities
 - a) Core Cutter Method
 - b) Sand Replacement Method
- 6. Proctor Compaction
 - a) Standard Proctor Compaction
 - b) Modified Proctor Compaction
- 7. Determination of Coefficient of Permeability
 - a) Constant Head Method
 - b) Variable Head Method
- 8. Consolidation Test

Textbooks:

- 1. S. Mittal and JP Shukla, Soil Testing for Engineers, Khanna Publishers, New Delhi, 2008.
- 2. KVS Apparao and VCS Rao, Soil Testing Laboratory Manual & Question Bank, University Science Press, New Delhi, 2013.

- 1. Compendium of Indian Standards on Soil Engineering: Part 1 & 2, Laboratory and Field Testing of Soils for Civil Engineering Purposes.
- **2.** Braja M. Das, Soil Mechanics Laboratory Manual, Oxford University Press, New York, 2016.

M. Tech., I Semester

Course Title	Soil	Mec	hanio	cs-1 I	M. Tech, I Semester			
Course Code	Category	Hou	ırs/W	eek	Credits	Maximum Marks		
2212110	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		0	0	4	2	50	50	100
Mid Exam Duration: 2 Hrs.					End Exam Duration: 3 Hrs.			

Course Objectives: The course is designed to students,

- Conduct the various tests to determine shear strength parameters of the soils
- Study the bearing and swell pressure, chemical components in soils

On succe	ssful completion of this course, the students will be able to
CO 1	Estimate shear strength and bearing pressure of the soils
CO 2	Estimate the swell pressure, amount of solids and amount CaCO ₃ in soils

List of Experiments:

- 1. Direct Shear Test
- 2. Unconfined Compression Test
- 3. Triaxial Shear Test UU, CU, CD Tests
- 4. California Bearing Ratio
- 5. Laboratory Vane Shear Test
- 6. Swell Pressure Test
- 7. Total Soluble Solids Content in Soils
- 8. Calcium Carbonate Content in Soils

Textbooks:

- 1. S. Mittal and JP Shukla, Soil Testing for Engineers, Khanna Publishers, New Delhi, 2008.
- 2. KVS Apparao and VCS Rao, Soil Testing Laboratory Manual & Question Bank, University Science Press, New Delhi, 2013.

- 1. Compendium of Indian Standards on Soil Engineering: Part 1 & 2, Laboratory and Field Testing of Soils for Civil Engineering Purposes.
- 2. Braja M. Das, Soil Mechanics Laboratory Manual, Oxford University Press, New York, 2016.

M. Tech., I Semester

Course Title	Resear	ch M	etho	dolog	gy &IPR	M. Tech, I Semester				
Course Code	Category	Hours/Week Credits			Credits	Maximum Marks				
2212111	Mandatory Course	L	T	Р	С	ContinuousEnd7InternalExamAssessment				
	(MC)	2	0	0	2	40	60	100		
Mid Exa	m Duration:	2 Hrs	5.			End Exam Du	uration: 3	Hrs.		
• A a	bout the basi dopted and/or ommunicated	ics of deve to the	how loped peers	resea , rese	arch is undertal	are defined, research ken, and how resear				
CO 1	_				se, the students	will be able to				
CO 1 CO 2			-		ormation, follow	research ethics				
CO 3	Understand	that	toda	ay's	world is cont	rolled by Comput ed by ideas, concept,	-			
CO 4	individuals Intellectual	Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.								
CO 5	research wo	ork and	d inve	stmen	t in R & D, which	n incentive to inver ch leads to creation of growth and social be	of new and			

<u>UNIT-</u>I Introducti

Introduction

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

<u>UNIT-</u>II

Literature

Effective literature studies approaches, analysis Plagiarism, Research ethics

<u>UNIT-</u>III

Technical Writing

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

<u>UNIT-</u>IV

Nature of Intellectual Property

Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

<u>UNIT-</u>V

Patent Rights and New Developments in IPR

Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

Textbooks:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: An Introduction for Science & Engineering Students", Juta Education, 1996.
- 2. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners", Sage Publications, 2011.

- 1. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", Clause 8 Publishing, 2021.
- 2. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

M. Tech., I Semester

Course Title	Engl	ish fo	or Re Writ		ch Paper	M. Tech, I Semester			
Course Code	Category	Hours/Week			Credits	Maximum Marks			
2270A01	Audit	L	T P	Р	С	Continuous Internal Assessment	End Exam	Total	
		2	0	0	0	40	0	40	
Mid Exan	n Duration:	2 Hr	s.		I	End Exam D	uration: 3	Hrs.	
	Ū				gned to students, g skills and level				
	-				-	ntroduction, Methodo	ology etc.)	and	
						use the same section			
					o cover similar ar		U		
On succes	sful comple	etion of	of this	s cour	se, the students	will be able to			
CO 1	Understand	that I	how to	o impi	rove writing skill	ls and level of readab	ility		
CO 2	Learn abou	t wha	t to w	rite in	literature				
CO 3	Understand	l the s	kills r	needec	l for writing the t	title			

CO 4Understand the skills needed for writing the results and conclusionsCO 5Understand the skills needed for writing a title ensure the good quality of paper at
very first time submission

<u>UNIT-</u>I

Planning and Preparation

Planning and Preparation, Word Order, breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness, Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

<u>UNIT-</u>II

Review of Literature

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check

<u>UNIT-</u>III

Key Skills

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature

<u>UNIT-</u>IV

Skills needed to Write Results and Conclusions

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

<u>UNIT-</u>V

Paper Submission

Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission.

Textbooks:

- 1. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.
- **2.** Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's Book.

M. Tech., I Semester

Course Title	Di	isaste	er Ma	anage	M. Tech, I Semester					
Course Code	Category	Hou	ırs/W	eek						
2270A02	Audit	L T P			С	C Continuous Internal Assessment		Total		
		2	0	0	0	40	0	40		
Mid Exan	n Duration:	2 Hr	s.			End Exam Du	uration: 3	Hrs.		
bey ind rec	yond the hu luced by hu overy ssful comple	iman man a etion of emon	contr ctiviti of this strate	ol as es wit	well as the dis th emphasis on c se, the students tical understandi	ons of disasters cau sasters and environn disaster preparedness will be able to ing of key concepts	nental haz	zards and		
CO 2	Critically e practice fro					nd humanitarian resp	onse poli	cy and		
CO 3	-			0		humanitarian respon onflict situations.	se and pr	actical		
CO 4	relevance in specific types of disasters and conflict situations. Critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in									
CO 5					-	pplying the reduct ns to bring awareness		niques,		

<u>UNIT-</u>I

Introduction

Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

<u>UNIT-</u>II

Repercussions of Disasters and Hazards

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Manmade disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

<u>UNIT-</u>III

Disaster Prone Areas in India

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post-Disaster Diseases and Epidemics

<u>UNIT-</u>IV

Disaster Preparedness and Management

Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data. From Meteorological and Other Agencies, Media Reports:

Governmental and Community Preparedness.

<u>UNIT-</u>V

Risk Assessment and Mitigation

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

Textbooks:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, Issues and Strategies", New Royal Book Company, 2007.
- 2. Sahni, Pardeep Et. Al. (Eds.)," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi, 2004.

Reference Books:

1. Goel S. L., Disaster Administration and Management Text and Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi, 2007.

M. Tech., I Semester

Course Title	Sanskrit	for '	Гесh	nical	Knowledge	M. Tech, I Semester			
Course Code	Category	Hours/Week			Credits	Maximum Marks			
2270A03	Audit	LT		Р	С	Continuous Internal Assessment	End Exam		
		2	0	0	0	40	0	40	
Mid Exan	n Duration:	2 Hrs	End Exam Duration: 3 Hrs.						

Course Objectives: The course is designed to students,

- To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- Learning of Sanskrit to improve brain functioning
- Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

On successful completion of this course, the students will be able to

CO 1	Understand the basic Sanskrit language
CO 2	Ancient Sanskrit literature about science & technology can be understood

<u>UNIT-</u>I

Alphabets in Sanskrit <u>UNIT-II</u> Past/Present/Future Tense, Simple Sentences <u>UNIT-III</u> Order, Introduction of roots <u>UNIT-IV</u> Technical information about Sanskrit Literature <u>UNIT-V</u> Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

Textbooks:

- 1. "Teach Yourself Sanskrit" Prathama Deeksha Vempati Kutumba Shastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication, 2012.
- 2. "Abhyas pustakam" Dr. HR Vishwas, Samskrita-Bharti Publication, New Delhi, 2020.

Reference Books:

1. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi, 2006.

II Semester Syllabus

M. Tech., II Semester

Course Title	Experime	ntal	Geon	M. Tech. II Semester											
Course Code	Category	Ho	urs/W	eek	Credits	Maximum Marks									
2212201	Professional Core	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total							
	(PCC)	3	0	0	3	40	60	100							
	Mid Exam Dura	ation:	02.00) Hrs		End Exam D	uration: 3	Hrs							
Course O	bjectives:														
	•	pe of	soil fi	rom a	job site or	in a professional se	etting,								
		-			0	l evaluate design de	0	om							
yo	ur understanding o	f that	soil's	prope	erties.	-									
• To	explore the scie	entific	e prin	ciples	s used to	describe the maj	jor engine	ering							
pro	perties of soil, a	nd th	e eng	gineer	ing testing	methods used to	quantify	these							
pro	operties														
On succes	sful completion o	f this	cours	se, the	e students v	will be able to									
CO 1			0			e requirement of and number of bore		neering							
CO 2	Execute different														
CO 3	Collect disturbed	/undis	turbed	d sam	ples for lab	oratory tests and c	an suggest	design							
CO 4	Expose different design purpose.	metho	ods fo	or esti	mation of o	dynamic soil prope	erties requi	ired for							
CO 5		ntatio	n sche	eme fo	or monitori	Develop instrumentation scheme for monitoring of critical sites									

<u>Unit - I</u> Introduction

Scopes and objectives of explorations – Planning a subsurface exploration – Stages in sub surface exploration – Explorations for preliminary and detailed design – Spacing and depth of exploration

<u>Unit - II</u>

Open Excavation and Borings of Exploration

Pits and Trenches – Drifts and Shafts – Methods of boring – Auger Borings – Wash Borings – Rotary Drilling –Percussion Drilling – Core Drilling

<u>Unit - III</u>

Soil Samples and Samplers

Types of soil samples – Disturbed samples – Undisturbed samples – Design features affecting the sample disturbance –Split spoon samplers – Scraper Bucket Samplers –Shell by Tubes

and Thin walled Samplers – Piston Samplers – Denis Samplers – Preservation and handling of samples

<u>Unit - IV</u>

In-Situ Testing

Field tests – Standard Penetration Tests – Cone Penetration Tests – In-situ Vane Shear Test– Plate Load Test, monotonic and cyclic –Field Permeability Tests – In-situ Tests using Pressure meter – Observation of Ground Water Table– Instrumentation in soil engineering, strain gauges, resistance and inductance type

<u>Unit - V</u>

Geophysical Methods and Wave Measurements

Geophysical Methods: Types–Electrical Resistivity Methods – Electrical Profiling Method – Electrical Sounding Method – Seismic Methods – Seismic refraction method – Sub-soil Investigation Report.

Wave Measurements: Cross Hole Tests (CHT), Downhole Tests (DHT), Spectral Analysis of Surface Waves, Seismic Refraction, Suspension Logging: Electromagnetic Wave Techniques: Ground Penetrating Radar (GPR), Electromagnetic Conductivity (EM), Surface Resistivity (SR), Magnetometer Surveys (MT)

Textbooks:

- 1. S.P. Brahma, Foundation Engineering, Tata McGraw-Hill Publishers, New Delhi, 1993.
- 2. V.N.S. Murthy, Soil Mechanics & Foundation Engineering, CBS Publishers & Distributors Pvt. Ltd., India, 2017.

- 1. Hvorslev, MJ, Sub Surface Exploration and Sampling of Soils for Civil Engineering Purpose, Water-ways Station, Vicksburg, Mississippi, 1949.
- 2. AraArman and NareshSamtani, Sub Surface Investigations, Federal Highway Administration, Arlington, Virginia, 2002.

M. Tech., II Semester

Course Title	Earth Re	taini	ng St	M. Tech. II Semester										
Course Code	Category	Но	urs/W	eek	Credits	Maximum Marks								
2212202	Professional Core	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total						
	(PCC)	3	0	0	3	40	60	100						
	Mid Exam Dur	ation:	: 02.00) Hrs		End Exam D	uration: 3	Hrs						
Course O	bjectives:													
• To	calculate earth p	ressur	e on	vario	us earth ref	taining structures	such as g	ravity						
	-					struts and coffer of	-	•						
rel	evant earth retaining	ng str	ucture	for g	given soil co	ondition, design of	sheet pile	with						
		-		-		wall by using diffe	-							
On succes	ssful completion o	f this	cours	e, the	e students v	will be able to								
CO 1	Determine the ea and surcharge	rth pr	essure	e and	point of ap	oplication for varie	ous types	of soils						
CO 2	Analyzing the sta	bility	of a re	etainii	ng structure	and drainage cond	litions							
CO 3	Design of sheet p the caissons accord					oedment length, de	sign and	analyze						
CO 4	Designing of later	ral sup	oportii	ng sys	stem and the	eir stability								
CO 5	Design of reinfor	ced ea	rth wa	all	Design of reinforced earth wall									

<u>Unit – I</u> Forth Process

Earth Pressure

Rankine and Coulomb theories, active, passive and pressure at rest; concentrated surcharge above the back fill, earth pressure due to uniform surcharge, earth pressure of stratified backfills, saturated and partially saturated backfill.

<u>Unit – II</u>

Retaining Walls

Proportioning of retaining walls, stability of retaining walls, mechanically stabilized retaining walls/reinforced earth retaining walls

<u>Unit – III</u> Sheet Pile Wall Free Earth System, Fixed Earth System

<u>Unit – IV</u> Bulkheads

Bulkheads with free and fixed earth supports, equivalent beam method, Anchorage of bulkheads and resistance of anchor walls, spacing between bulkheads and anchor walls, resistance of anchor plates

<u>Unit – V</u>

Braced Excavations

Earth pressure against bracings in cuts, Heave of the bottom of cut in soft clays

Textbooks:

- 1. Das, B.M., Principles of Geotechnical Engineering, Cengage Learning India Private Limited, UP,2018.
- 2. Mandal, J.N., Reinforced Soil and Geo-textiles, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.

- 1. McCarthy, D.F., Essentials of Soil Mechanics and Foundations: Basic Geo-techniques (Sixth Edition), Prentice Hall, 2002.
- 2. Militisky, J. and Woods, R., Earth and Earth Retaining Structures, Routledge, 1992.

M. Tech., II Semester

Course Title	Dynamics of	Soil	and l	M. Tech. II Semester						
Course Code	Category	Hours/Week Credits				Maximum Marks				
2212203	Professional Elective (PEC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	(PEC)	3	0	0	3	40	60	100		
	Mid Exam Dura	tion:	02.00	Hrs		End Exam Du	iration: 3	Hrs		
сус	•	-			-	faction, dynamic el design and bearin				
On succes	sful completion o	f this	cours	e, the	e students	will be able to				
CO 1	Understands the amplification	ory	of v	ibrati	on and	resonance phenon	nenon, d	ynamic		
CO 2	Understand propa	gatior	n of bo	ody w	aves and su	urface waves throug	gh soil.			
CO 3	Exposed to different methods for estimation of dynamic soil properties required for design purpose									
CO 4	Predict dynamic b	earing	g capa	city a	and assess l	iquefaction potentia	al of any si	ite		
CO 5	Apply theory of y properties and bea				ign machin	e foundation based	on dynan	nic soil		

<u>Unit – I</u>

Fundamentals of Vibrations and Wave Propagation

Single, two and multiple degree of freedom systems, vibration isolation, vibration absorbers, vibration measuring instruments. Wave propagation: elastic continuum medium, semi-infinite elastic continuummedium, soil behaviour under dynamic loading.

<u>Unit – II</u>

Liquefaction of Soils

liquefaction mechanism, factors affecting liquefaction, studies bydynamic tri-axial testing, oscillatory shear box, shake table and blast tests, assessment ofliquefaction potential.

<u>Unit – III</u>

Dynamic elastic constants of soil

Determination of dynamic elastic constants, variousmethods including block resonance tests, cyclic plate load tests, wave propagation tests, oscillatory shear box test.

<u>Unit – IV</u>

Machine Foundations

Design criteria for machine foundations; Elastic homogeneoushalf space and lumped parameter solutions, analysis and design of foundations for reciprocatingand impact type machines, turbines, effect of machine foundation on adjoining structures.

<u>Unit – V</u>

Bearing Capacity of Foundations

Introduction to bearing capacity of dynamicallyloaded foundations, such as those of water towers, chimneys and high rise buildings, response ofpile foundations.

Textbooks:

- 1. Das, B.M., "Fundamentals of Soil Dynamics", Elsevier, 1983.
- 2. Prakash, S., Soil Dynamics, McGraw Hill, 1981.

- 1. Kameswara Rao, N.S.V., Vibration Analysis and Foundation Dynamics, Wheeler Publication Ltd., 1998.
- 2. Prakash, S. and Puri, V.K., Foundation for Machines: Analysis and Design, John Wiley & Sons, 1998

Course Title	Foundation	s on]	Expa	nsiv	e Soils	M. Tech. II Semester			
Course Code	Category	Ηοι	ırs/W	eek	Credits	Maximum Marks			
2212204	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
	(PEC)	3	0	0	3	40	60	100	
	Mid Exam Dura	ation:	02.00) Hrs		End Exam Du	iration: 3	Hrs	
Course Ob	jectives:								
• To	study the behavio	our, tre	eatme	nt and	d moisture	control of the expa	unsive soil	s and	
desi	ign steps for shall	ow and	d deep	p four	ndations and	d estimation of later	ral pressur	e.	

On succe	ssful completion of this course, the students will be able to
CO 1	Understand the behaviour of expansive soils
CO 2	Understand the treatment methods and moisture control techniques
CO 3	Design the shallow foundations on the expansive soils
CO 4	Design the deep foundations on the expansive soils
CO 5	Determine the lateral pressure and designing the support systems

Unit – I

Nature of Expansive Soils

Microscale Aspects of Expansive Soil Behavior, Macroscale Aspects of Expansive SoilBehavior, Identification of Expansive Soils, Characteristics of Expansive Soil Profiles

Unit – II

Soil Treatment and Moisture Control

Over excavation and Replacement, Pre-wetting Method, Chemical Admixtures, Moisture Control Alternatives

Unit – III

Design Methods for Shallow Foundations

Spread Footing Foundations, Stiffened Slab Foundations, Remedial Measures for Shallow Foundations

Unit – IV

Design Methods for Deep Foundations

Pier and Grade Beam Foundation, Patented Piers, Deep Foundation Design Examples, Remedial Measures for Deep Foundations

Unit – V

Lateral Pressure on Earth Retaining Structures

Computation of Lateral Pressure from Expansive Soils, Testing for Measuring Lateral Swelling Pressure, Reduction of Lateral Swelling Pressure, Design for Lateral Earth Pressure

Textbooks:

- 1. John D Nelson and Debora J Miller., "Expansive Soils Problems and Practice in Foundation and Pavement Engineering", John Wiley & Sons, INC., 1997.
- 2. RamachandraPhani Kumar and Sana Suri., "Expansive Soils Problems and Remedies", LAP Lambert Academic Publishing, 2013.

- 1. D.R. Snethen., "A Review of Engineering Experiences with Expansive Soils in Highway Sub-grades", Federal Highway Administration, Washington DC., 1976.
- 2. F.H.Chen, Foundations on Expansive Soils, Elsevier Scientific Publishing Company, New York, 1988.

Course Title	Offshore Geo	techı	nical	M. Tech. I	M. Tech. II Semester			
Course Code	Category	Но	ırs/W	eek	Credits	Maximu	m Marks	
2212205	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
	(PEC)	3	0	0	3	40	60	100
	Mid Exam Dura	ation:	02.00) Hrs	1	End Exam Du	iration: 3	Hrs
Course Ol	ojectives:							
• Exe	ecute investigation	prog	am fo	or ma	rine soil de	posits and select ne	ecessary d	esign
par	ameters. Design s	suitabl	e ma	rine t	foundation	as per project rec	quirement.	Can
dev	elop numerical mo	odel fo	or resp	oonse	of marine f	foundation for offsh	nore condi	tions
On succes	sful completion o	f this	cours	e, the	e students v	vill be able to		
CO 1	Understand the m	arine	soil de	eposit	s and their	properties		
CO 2	Understand the be							
CO 3	Perform site invest	stigatio	on in 1	marin	e environm	ent		
CO 4	Differentiate the o	offsho	re and	near	shore found	lation structures,		
CO 5	Design the marine	e foun	dation	ıs by ı	using FEM	based analysis		

<u>Unit – I</u>

Marine Soil Deposits

Offshore environment, Offshore structures and foundations, Specific problems related to marine soil deposits, Physical and engineering properties of marine soils

<u>Unit – II</u>

Behavior of Soils Subjected to Repeated Loading

Effect of wave loading on offshore foundations, Behavior of sands and clays under cyclic loading, Laboratory experiments including repeated loading, Cyclic behavior of soils based on fundamental theory of mechanics, Approximate engineering methods which can be used for practical cases

<u>Unit – III</u>

Site Investigation in the Case of Marine Soil Deposits

Challenges of site investigation in marine environment, Different site investigation techniques, sampling techniques, Geophysical methods, Recent advancements in site investigation and sampling used for marine soil deposits

<u>Unit – IV</u>

Foundations in Marine Soil Deposits

Different offshore and nearshore foundations, Gravity platforms, Jack-up rigs, pile foundations. Caissons, Spud Cans

<u>Unit – V</u>

Numerical Modeling of Marine Foundations Subjected to Wave Loading

Numerical modeling of cyclic behavior of soils, empirical models, elastic-plastic models, FEM analysis of marine foundations subjected to wave loading

Textbooks:

- 1. H. G. Poulos. "Marine Geotechnics", Unwin Hyman Ltd, London, UK, 1988
- 2. D. V. Reddy and M. Arockiasamy, "Offshore Structures", Volume: 1, R.E. Kreiger Pub and Co., 1991

Reference Books:

1. D. Thomson and D. J. Beasley, "Handbook of Marine Geotechnical Engineering", USNavy, 2012

Course Title	Design o E	of Un xcava			nd	M. Tech. II Semester						
Course Code	Category	Но	urs/W	/eek	Maximur	n Marks						
2212206	Professional Elective	L T P C Internal To										
	(PEC)	3	0	0	3	40	60	100				
	Mid Exam Dura	ation:	02.00	Hrs	I	End Exam Du	ration: 3	Hrs				
Course O	bjectives:					I						
• To	know the planning	g and e	explor	ation	of various	underground projec	ts, analyz	e the				
stre	ess distribution, an	alyze	the ro	ck qu	ality desigr	nation and also evaluation	uate its					
stre	ength											
• To	analyze the interact	ction b	oetwee	en the	rock mass	and tunnel surface						
On succes	sful completion o	f this	cours	e, the	e students v	will be able to						
CO 1	Understand the ap	plicat	ions a	nd pr	inciples of	underground excav	ations					
CO 2	Understand the str	ress di	stribu	tion a	around the	tunnel with differen	t shapes					
CO 3	Performing the va	rious	tests t	o ide	ntify the cla	assification of rock						
CO 4	Designing the sup	portin	ig syst	tem fo	or tunnels							
CO 5	Performing the test	sts on	rock	mass								

<u>Unit – I</u>

Introduction

Introduction, planning of exploration for various underground construction projects, stereographic projection method, principle and its application in underground excavation design.

<u>Unit – II</u>

Stress Analysis for Tunnels

Elastic stress distribution around tunnels, stress distribution for different shapes and under different in-situ stress conditions, Greenspan method, design principles, multiple openings, openings in laminated rocks, elasto-plastic analysis of tunnels, Daemen's theory

<u>Unit – III</u>

Rock Mass Classification

Application of rock mass classification systems, ground conditions in tunneling, analysis of underground openings in squeezing and swelling ground, empirical methods, estimation of elastic modulus and modulus of deformation of rocks; uniaxial jacking / plate jacking tests, radial jacking and Goodman jacking tests, long term behaviour of tunnels and caverns, New Austrian Tunneling Method (NATM), Norwegian Tunneling Method (NTM), construction dewatering.

Unit – IV

Design of Support System

Rock mass-tunnel support interaction analysis, ground response and support reaction curves, Ladanyi'selasto-plastic analysis of tunnels, design of various support systems including concrete and shotcrete linings, steel sets, rock bolting and rock anchoring, combined support systems, estimation of load carrying capacity of rock bolts

<u>Unit – V</u>

Test on Rock Mass

In-situ stress, flat jack, hydraulic fracturing and over coring techniques and USBM type drill hole deformation gauge, single and multi-point bore hole extensometers, load cells, pressure cells, etc. Instrumentation and monitoring of underground excavations, during and after construction, various case studies

Textbooks:

- 1. Hoek, E and Brown, E. T.," Underground Excavations in Rocks", Institute of Mining Engineering, 1980.
- 2. Singh, B. and Goel, R.K., "Rock Mass Classification- A Practical Engineering Approach", Elsevier, 1999.

- 1. Obert, L. and Duvall, W.I., "Rock Mechanics and Design of Structures in Rocks", John Wiley.
- 2. Singh, B. and Goel, R.K., "Tunneling in Weak Rocks", Elsevier

Course Title	Design wi	ith G	eosy	nthe	M. Tech. II Semester			
Course Code	Category	Ηοι	ırs/W	eek	Maximum	n Marks		
2212207	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
	(PEC)	3	0	0	3	40	60	100
	Mid Exam Dura	tion:	02.00	Hrs		End Exam Du	ration: 3 I	Irs
Course O	bjectives:							
• To	understand the em	nergin	g tren	ds of	Geosynthe	etic in Geotechnical I	Engineerin	g
• To	evaluate the differ	ent pr	opert	ies of	f including	different tests		
• To	analyze the function	ons of	geos	ynthe	etic and its	suitability		
• To	design different st	ructur	es us	ing g	eosynthetic	cs according to variou	us applicat	tions
On succes	sful completion o	f this	cour	se, th	e students	s will be able to		
CO 1	Understand the ap	oplicat	ions	and p	rinciples o	f underground excav	ations	
CO 2	Understand the st	ress d	istrib	ution	around the	e tunnel with differen	t shapes	
CO 3	Performing the va	arious	tests	to ide	entify the c	lassification of rock		
CO 4	Designing the sup	portir	ng sys	stem f	for tunnels			
CO 5	Performing the te	sts on	rock	mass				

<u>Unit – I</u>

Overview of Geosynthetics

Basic description of Geosynthetics, Polymeric Material, Geotextiles, Geogrids, Geonets, Geomembranes, Geosynthetic Clay Liners, Geopipe, Geofoam, Geocomposites.

<u>Unit – II</u>

Designing with Geotextiles

Design Methods, Geotextile Functions, Mechanism, Properties, Test Methods, Separation, Roadway Reinforcement, Soil Reinforcement, Filtration, Drainage, Multiple Functions, Construction Methods and Techniques.

<u>Unit – III</u>

Designing with Geogrids

Properties and Test Methods, Designing for Geogrid Reinforcement, Design Critique, Construction Methods.

<u>Unit – IV</u>

Designing with Geonets

Properties and Test Methods, Designing for Geonet Drainage, Design Critique, Construction Methods.

<u>Unit – V</u>

Designing with Geomembranes

Properties and Test Methods, Survivability Requirements, Liquid Containment Liners, Covers for Reservoirs, Water Conveyance Liners, Solid Material Liners, Landfill Covers and Closures, Under Ground Storage Tanks, Hydraulic and Geotechnical Applications.

Text Books:

- 1. "Designing with Geosynthetics by Robert M. KoernerPrantice Hall, Eaglewood cliffs, NJ, 2012.
- 2. "Engineering with Geosynthetics", by G. Venkatappa Rao and GVSSuryanarayana Raju Tata McGraw Hill Publishing Company Limited New Delhi, 1990.

- 1. Jewell, R.A., Soil Reinforcement with Geotextile, CIRIA, London, 1996.
- 2. Jones, C.J.F.P., Earth Reinforcement and Soil Structures, Earthworks, London, 1988.

Course Title	Geotechr Er	ical Igine		-	M. Tech. II Semester								
Course Code	Category	Hours/Week Credits Maximum Marks											
2212208	Professional Elective	L	Т	Р	С	C Continuous End Internal Assessment T							
	(PEC)	3	0	0	3	40	60	100					
	Mid Exam Dura	Viid Exam Duration: 02.00 Hrs End Exam Duration: 3 Hrs											
Course O	bjectives:												
• To	know the causes a	nd qu	antifi	catior	n of earthqu	iake.							
		-			-	gn criterions to be fo	ollowed fo	or the					
	sign different geote		-										
On succes	ssful completion of	f this	cours	se, the	e students	will be able to							
CO 1	*	of ear		/		ground motion par	ameters f	from a					
CO 2		istic				nic hazard analysis	consideri	ng the					
CO 3		of wa	we p	ropag	ation throu	ugh rocks and soil is	media to	derive					
CO 4	Analyze liquefaction susceptibility of a site and determine factor of safety against liquefaction												
CO 5	Design earthquak foundations, retain			-		structures like sha	allow and	l deep					

<u>Unit – I</u>

Earthquake Seismology

Causes of Earthquake, Plate Tectonics, Earthquake Fault Sources, Seismic Waves, Elastic Rebound Theory, Quantification of Earthquake, Intensity and Magnitudes, Earthquake Source Models.

<u>Unit – II</u>

Earthquake Ground Motion

Seismograph, Characteristics of Ground Motion, Effect of Local Site Conditions On Ground Motions, Design Earthquake, Design Spectra, Development of Site Specification and Code-Based Design.

<u>Unit – III</u>

Ground Response Analysis

One-Dimensional Ground Response Analysis: LinearApproaches, Equivalent Linear Approximation of Non-Linear Approaches, Computer Code "SHAKE".

<u>Unit – IV</u>

Liquefaction and Lateral Spreading

Liquefaction Related Phenomena, LiquefactionSusceptibility: Historical, Geological, Compositional and State Criteria. Evaluationof Liquefaction by Cyclic Stress and Cyclic Strain Approaches, Lateral Deformation and Spreading, Criteria for Mapping Liquefaction Hazard Zones.

<u>Unit – V</u>

Design of Foundations and Stability Analysis of Slopes

Seismic Design of Foundations, Seismic Slope Stability Analysis: Internal Stability and Weakening Instability and Seismic Design of Retaining Walls.

Textbooks:

- 1. Steven Kramer, "Geotechnical Earthquake Engineering", Pearson, 2008.
- 2. Ferrito, J.M, Seismic Design Criteria for Soil Liquefaction, Tech. Report of Naval Facilities service center, Port Hueneme, 1997.

- 1. Seco e Pinto, P., Seismic Behaviour of Ground and Geotechnical Structure, CRC Press, 1997.
- Naeim, F., The Seismic Design Handbook, Kluwer Academic Publication, 2ndEdition, 2001.

Course Title	Subsoil]	Expl	orati	on L	M. Tech. II Semester				
Course Code	Category	Но	urs/W	eek	Credits	Maximum Marks			
2212209	Professional Core	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
	(PCC)	0	0	4	2	50	50	100	
	Mid Exam Dura	tion:	02.00) Hrs		End Exam Dur	ation: 3 H	Irs	
Course O • To	0	prope	rties, I	load o	carrying ca	pacity and soil profile	.		
On succes	sful completion of	of this	s cour	se, tł	ne student	s will be able to			
CO 1	Classify the soil	based	on th	e coll	lection of s	soils by borings and S	PT		
CO 2	Design the suitab	le foi	ındati	on ba	sed upon	the load carrying capa	city of the	soil	

List of Experiments:

- 1. Auger Boring
- 2. Standard Penetration Test
- 3. Plate Load Test
- 4. Field CBR Test
- 5. Pile Load Test
- 6. Geophysical Exploration Tests

Textbooks:

1. S. Mittal and JP Shukla, Soil Testing for Engineers, Khanna Publishers, New Delhi, 2008.

Reference Books:

1. Compendium of Indian Standards on Soil Engineering: Part – 1 & 2, Laboratory and Field Testing of Soils for Civil Engineering Purposes.

Course Title	Geotechn Mo	ical delin	U	M. Tech. II Semester							
Course Code	Category	Hou	ırs/W	eek	Credits	Maximum	n Marks				
2212210	Professional Core	CoreLTPCInternal AssessmentExam									
	(PCC)	0	0	4	2	50	50	100			
	Mid Exam Du	ratio	n: 2 I	Irs		End Exam Du	ration: 3 I	Hrs			
Course O	bjectives:					I					
• To	estimate the beari	ng ca	pacity	y and	settlement	of footing and pile,	safe desig	gn of			
the	slope.										
On succes	sful completion of this course, the students will be able to										
CO 1	Design the bearin	Design the bearing capacity and settlement of shallow and deep footings									
CO 2	Design the slope a	and fir	nd the	e facto	or of safety	against shear failure	•				

List of Experiments:

- 1. Ultimate, Net and Safe Bearing Capacity Using Terzaghi and IS Code Methods.
- 2. Net Settlement Pressure
- 3. Hyperbolic Curve Fitting of Tri-axial Compression Data
- 4. Terzaghi One dimensional consolidation solution by FDM (perform analysis of substructures by packages)
- 5. Beam on Elastic Foundation by FDM
- 6. FDM Solution for Raft Foundation
- 7. Axial Loaded Piles by Direct FEM
- 8. Laterally Loaded Piles by FDM & FEM
- 9. Stability Analysis by Bishop theory
- 10. Stability Analysis by Method of Slices.

Softwares:

- 1. GeoWizard
- 2. GeoStudio
- 3. Oyasis

Course Title	Te	chnic	al Se	emina	r	M. Tech.	M. Tech. II Semester							
Course Code	Category	Но	urs/W	eek	Credits	Maximu	m Marks							
2212211	Project													
		0 0 4 2 100 0 100												
	Mid Exam Duration: 3 Hrs End Exam Duration: 0 Hrs													
Course Ol	bjectives:													
• To	explain themse	elves v	with tl	he late	st develop	nents, the State of a	rt, in a Part	ticular						
Are	ea. It will be for	rum fo	or the	excha	nge of idea	s with experts and th	e professio	nal so						
wit	h a view to a	cquirir	ng ado	ditiona	l knowled	ge acquainting each	other with	n new						
rese	earch work, new	w met	hods a	and tec	chniques of	investigation or pro	duction							
On succes	sful completio	n of tl	nis co	urse, 1	the studen	ts will be able to								
CO 1	Students will opt for interns	0	oppo	rtunity	y to work i	n actual industrial e	nvironmen	t if they						
CO 2	In case of mini project, they will solve a live problem using software/analytical/computational tools													
CO 3	Students will l	earn te	o writ	e tech	nical report	S								
CO 4	Students will technically qua		-		to present	and defend their	work in f	Front of						

Description:

Students can take up small problems in the field of design engineering as technical seminar. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Course Title	Va	lue	Educ	atio	n	M. Tech. II Semester					
Course Code	Category	Но	ırs/W	eek	Credits	Maximum Marks					
2270A04	Audit	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		2	0	0	0	40	0	40			
	Mid Exam Duration: 2 Hrs End Exam Duration: 0 Hrs										
Course Ob	jectives:										
• Und	erstand value	e of e	ducati	ion aı	nd self- de	velopment					
• Imb	ibe good valu	ies in	stude	ents							
• Let	the should kn	low a	bout	the in	nportance	of character					
On success	ful completi	on of	this of	cours	se, the stu	lents will be able to					
CO 1	Know the sel	f-dev	elopn	nent							
CO 2	Learn the imp	oortar	nce of	hum	an values						
CO 3	Developing th	he pe	rsonal	lity							
CO 4	Understandin	g the	true f	friend	lship						
CO 5	Understandin	g anc	l impi	roving	g the chara	cter					

<u>Unit – I</u>

Values and Self-Development

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgements.

<u>Unit – II</u>

Importance of Cultivation of Values

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline.

<u>Unit – III</u>

Personality and Behavior 1

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.

<u>Unit – IV</u>

Personality and Behavior 2

True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

<u>Unit – V</u>

Character and Competence

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

Textbooks:

1. Chakroborty, S.K. "Values and Ethics for Organizations Theory and Practice", Oxford University Press, New Delhi, 1999.

Course Title	Con	Constitution of India M. Tech. II Semester											
Course Code	Category	Ho	Hours/Week Credits Maximum Marks										
2270A05	5 Audit	L	L T P C Continuous Assessment End Exam										
		2	0	0	0	40	0	40					
	Mid Exam	Durat	ion: 2	Hrs		End Exam D	uration: 0	Hrs					
Course O	bjectives:												
	•	remise	es info	orming	g the twin	themes of liberty a	nd freedom	from a					
	vil rights perspe			L.		2							
						egarding modern II							
CO	nstitutional role	e and	entit	lemen	t to civil	and economic right	nts as well	as the					
	0					Indian nationalism.							
						r the commencemen							
				•		drafting of the India	an Constitu	tion.					
	-					ts will be able to							
CO 1	-					rights in India for	the bulk of	Indians					
CO 0	before the arri					cs. nework of argument		1.1					
CO 2	Discuss the in	tellect			of the fram	nework of argument	That inform						
		ion of	cocia	1 refor				ned the					
CO 3	conceptualizat				ms leading	to revolution in Indi	ia.						
CO 3	conceptualizat Discuss the ci	rcums	tances	s surro	ms leading	to revolution in India e foundation of the	ia. Congress S	ocialist					
CO 3	conceptualizat Discuss the ci Party [CSP] u	rcums nder tl	tance: he lea	s surro dershi	ms leading ounding the p of Jawah	to revolution in Indi	ia. Congress S eventual fa	locialist ilure of					

<u>Unit – I</u>

History and Philosophy of the Indian Constitution

History, Drafting Committee, (Composition & Working), Preamble, Salient Features

<u>Unit – II</u>

Contours of Constitutional Rights & Duties

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

<u>Unit – III</u>

Organs of Governance

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

<u>Unit – IV</u>

Local Administration

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Pachayati raj: Introduction, PRI: ZilaPachayat. Elected officials and their roles, CEO ZilaPachayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

<u>Unit – V</u>

Election Commission

Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Textbooks:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication., 2021.
- 2. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

- 1. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1stEdition, 2015.
- 2. M. P. Jain, Indian Constitution Law, 7thEdn., Lexis Nexis, 2014.

Course Title	Pe	dago	gy St	tudie	S	M. Tech. II	M. Tech. II Semester					
Course Code	Category	Но	urs/W	eek	Credits	Maximun	n Marks					
2270A06	Audit	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total				
	2 0 0 0 40 0 40											
	Mid Exam I	Durat	ion: 2	Hrs	1	End Exam Du	ration: 0 H	Irs				
Course Ob	jectives:					I						
• Rev	view existing e	viden	ce on	the re	view topic	to inform programme	design an	d policy				
mal	king undertake	n by t	he DF	FID, o	ther agenci	es and researchers.						
• Ide	ntify critical ev	idenc	e gaps	s to gi	uide the dev	velopment.						
On success	sful completio	n of t	his co	urse,	the studen	ts will be able to						
	What pedagog classrooms in	-			-	ed by teachers in for	mal and in	nformal				
						of these pedagogical	practices,	in what				
	conditions, and											
						d practicum) and the	school cur	riculum				
	and guidance r	nateri	als be	est sup	oport effecti	ive pedagogy?						

<u>Unit – I</u>

Introduction and Methodology

Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

<u>Unit – II</u>

Thematic Overview

Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

<u>Unit – III</u>

Pedagogical Practices

Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

<u>Unit – IV</u>

Professional Development

Alignment with classroom practices and follow- up support, Peer support, Support from the head teacher and the community. Curriculum and assessment, Barriers to learning: limited resources and large class sizes

<u>Unit – V</u>

Research Gaps and Future Directions

Research design, Contexts, Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact

Textbooks:

- 1. Alexander RJ, Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell, 2001.
- 2. Akyeampong K, Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID., 2003.

- 1. Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261., 2001.
- 2. Agrawal M, Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379., 2004.

III Semester Syllabus

Course Title	Stability .	Anal	ysis (of Slo	M. Tech. III Semester					
Course Code	Category	Hours/Week			Credits	Maximum Marks				
2212301	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	(PEC)	3	0	0	3	40	60	100		
	Mid Exam Duration: 02.00 Hrs End Exam Duration: 3 Hrs									
Course Ol	ojectives:					I				
• To	introduce the co	ncept	s of	slope	stability,	introduce the con	cepts of	slope		
stal	oility analyses us	sing	simpl	ified	methods,	and to describe	some of	f the		
sop	histicated methods	of sl	ope st	abilit	y analyses.					
On success	sful completion of	this	cours	e, the	e students v	will be able to				
CO 1	Understand the typ	pes of	slope	es and	their failur	ces				
CO 2	Design the stabilit	y for	finite	and in	nfinite slop	es				
CO 3	Check the stability	of a	slope	when	there is a s	seepage				
CO 4	Adopt the advance	ed me	thods	to str	engthen the	e slope				
CO 5	Investigate the fail	lures i	in stał	oility	of slopes					

<u>Unit – I</u>

Slopes

Types and Causes of Slope Failures, Mechanics of Slope Failure, Failure Modes.

<u>Unit – II</u>

Stability Analysis

Infinite and Finite Slopes with or Without Water Pressures; Concept of Factor of Safety, Pore Pressure Coefficients, Mass Analysis, Wedge Methods, Friction Circle Method; Method of Slices, Bishop's Method, Janbu's Method, Morgenstern and Price, Spencer's Method

<u>Unit – III</u>

Stability Analysis in the Presence of Seepage

Two Dimensional Flow – Laplace Equation and its Solution, Graphical Method, Determination of Phreatic Line, Flow Nets in Homogeneous and Zoned Earth Dams under Steady Seepage and Draw-Down Conditions, Seepage Control in Earth Dams, Influence of Seepage on Slope Stability Analysis of Dam Body During Steady Seepage

<u>Unit – IV</u>

Strengthening Measures

Stabilization of Slopes by Drainage Methods, Surface and Subsurface Drainage, Use of Synthetic Filters, Retaining Walls, Stabilization and Strengthening of Slopes, Shotcreting, Rock Bolting and Rock Anchoring, Instrumentation and Monitoring of Slopes, Slope Movements, Warning Devices, Maintenance of Slopes

<u>Unit – V</u>

Case studies of urban slope stability

Aims, Regional perspective, Landslide inventory, Stability analyses of three sites, Case study 1 -Site 64 in the suburb of Scarborough, Case study 2 -Site 77, Morrison Avenue – Wombarra, Case study 3 -Site 134, Woonona Heights, concluding remarks on the three case studies, Landslide-triggering rainfall, Landslide susceptibility and hazard, Observational approach and monitoring.

Textbooks:

- 1. Chowdhary R Phil Flentje and Bhattacharya G, "Geotechnical Slope Analysis", CRC Press., 2009.
- 2. YM Cheng and CK lau, "Slope Stability Analysis and Stabilization", CRC Press., 2017.

Reference Books:

1. Milton E. Harr., "Groundwater and Seepage", Dover Publications. 2012.

Course Title	Foundatio	on on	Wea	M. Tech. III Semester				
Course Code	Category	Hours/Week Credits			Credits	Maximu	m Marks	
2212302	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
	(PEC)	3	0	0	3	40	60	100
	Mid Exam Dura	ation:	02.00) Hrs		End Exam D	uration: 3	Hrs
str	study the proper	dy the	requi	reme		ssification, analyz		
On succes	sful completion o	f this	cours	e, the	e students v	will be able to		
CO 1	Estimate the prop	erties	of roc	k				
CO 2	Understand the ef	fect of	f weal	c rock	c on founda	tions		
CO 3	Estimate the satis	factor	y conc	lition	s and bearing	ng capacity		
CO 4	Designing the sha methods of found			ation	on sloping	ground and sugge	sting the t	reatment
CO 5	Design of pile for	Indatio	ons on	rock	and perfor	ming the load tests		

<u>Unit – I</u>

Properties of Weak Rock

Engineering Properties of Weak Rocks, Different Rock Mass Classification Systems, Relative Merits and Demerits, Failure Criteria for Weak Rocks, Bi-Linear Mohr-Coulomb Failure Criterion, Hoek and Brown Criterion and Modified Hoek and Brown Failure Criterion Etc.

<u>Unit – II</u>

Effect of Weak Rock

Effect of Structural Planes on Rock Foundations, Possible Modes of Failure of Foundations on Rocks/ Rock Masses, Determination of In-Situ Shear Strength of Rocks and Rock Masses

<u>Unit – III</u>

Performance of Foundations

Requirements for Satisfactory Performance of Foundations, Bearing Capacity of Foundations on Rocks and Rock Masses, Allowable Bearing Pressure of Rock Foundations Using a Nonlinear Failure Criterion, Monotonic and Cyclic Plate Load Tests, Pressure-Settlement Characteristics, Effect of Layering, Anisotropy, Heterogeneity and Inelasticity

<u>Unit – IV</u>

Shallow Foundations

Shallow Foundations, Shallow Foundations on Sloping Ground, Raft Foundations, Stilt Foundations, Foundations for Suspension Bridges, Transmission Line Towers, Framed Buildings etc., Treatment of Foundations - Open Joints, Solution Cavities, Weak Seams

<u>Unit – V</u>

Pile Foundations

Piles in Weak Rocks, Bearing Capacity and Settlement of Piles, Piles in Stratified Rock Masses, Field Load Tests on Piles in Weak Rocks, Behaviour of Bored / Driven Piles in Soft / Weathered Rocks

Textbooks:

- 1. Ramamurthy, T., "Engineering in Rocks", PHI Learning Pvt. Ltd., 2014.
- 2. Hoek, E., "Practical Rock Engineering", Rock Science., 2006.

- 1. Wyllie Duncan C.," Foundations on Rock: Engineering Practice", E &FnSpon, Taylor and Francis., 2005.
- 2. Hudson J.A. and J.P. Harrison. Engineering Rock Mechanics: An Introduction to the Principles, 1997. Elsevier, Oxford

Course Title	Computatio	onal	Geor	nech	M. Tech. III Semester				
Course Code	Category	Но	Hours/Week		Credits	Maximum Marks			
2212303	Professional Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
	(PEC) <u>3 0 0 3 40 6</u>	60	100						
	Mid Exam Du	ratio	n: 2 H	Irs		End Exam Du	ration: 3 l	Irs	
Course O	bjectives:								
• To	understand differe	ent nu	meric	al and	d statistical	l tools for analyzing	various		
ge	otechnical engineer	ring p	roble	ms.					
• To	apply probabilist	ic app	oroacl	h for	selection	of design parameter	s and con	npute	
the	eir impact on risk a	ssessr	nent.					_	
On succes	ssful completion o	f this	cour	se, th	e students	s will be able to			
CO 1	Analyze linear an	d non	-linea	ır equ	ations usir	ng numerical techniqu	ies		
CO 2	Apply finite diff geotechnical struc		e and	finit	e element	method for analyzi	ing behavi	our of	
CO 3	Apply correlation	and r	egres	sion a	analysis for	r the geotechnical dat	ta.		
CO 4	Solve multilayere	d soil	syste	m by	FEM and	FDM			
CO 5	Solve problem of technique	f cons	olidat	tion a	nd flow th	nrough porous media	using nur	nerical	

<u>Unit – I</u>

Solution of Non-Linear and Linear Equations

Bisection, False Position, Newton-Raphson, Successive Approximation Method, Iterative Methods, Jacobi's Method, Gauss Seidal Method, Successive over Relaxation Method.

<u>Unit – II</u>

Finite Difference and Finite Element Method

Two Point Boundary Value Problems – Disichlet Conditions, Neumann Conditions; Ordinary and Partial Differential Equations. Fundamentals, Constitutive Finite Element Models for Soils.

<u>Unit – III</u>

Correlation and Regression Analysis

Correlation - Scatter Diagram, Karl Pearson Coefficient of Correlation, Limits of Correlation Coefficient; Regression –Lines of Regression, Regression Curves, Regression Coefficient, Differences Between Correlation and Regression Analysis.

<u>Unit – IV</u>

One-Dimensional Consolidation

Theory of Consolidation, Analytical Procedures, Finite Difference Solution Procedure for Multilayered Systems, Finite Element Formulation

<u>Unit – V</u>

Flow through Porous Media and Risk Assessment in Geotechnical Engg.

Geotechnical Aspects, Numerical Methods, Applications and Design Analysis, Flow in Jointed Media. Probabilistic Site Characterization and Design of Foundations

Textbooks:

- 1. S. Chandrakant., Desai and John T. Christian, "Numerical Methods in Geotechnical Engineering", Mc. Graw Hill Book Company, 1977.
- 2. M.K. Jain, S.R.K. Iyengar and R.K. Jain, "Numerical Methods for Scientific and Engineering Computations", Third Edition, New Age International (P) Ltd. Publishers, New Delhi. 2019.

- 1. D.J. Naylor and G.N. Pande, "Finite Elements in Geotechnical Engineering", Pineridge Press Ltd., UK., 1981.
- 2. Sam Helwany, "Applied Soil Mechanics", John Wiley & Sons, Inc., 2007.

Course Title	Solid W	aste	Mar	age	ment	M. Tech. III Semester			
Course Code	Category	Hours/Week			Credits	Maximum	n Marks		
220E121	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
	(OEC)	3	0	0	3	40	60	100	
	Mid Exam Duration: 2 Hrs End Exam Duration: 3 Hrs								
Course Ol	jectives:					I			
• To	know the neces	sity o	f soli	d was	ste manage	ment			
• To	study various st	rateg	ies fo	r the	collection	of solid waste			
• To	understand vari	ous s	olid w	aste	disposal m	ethods			
	understand how		-						
On succes	sful completion	n of tl	nis co	urse,	, the stude	nts will be able to			
CO 1	Understand and	l iden	tify tl	ne ph	ysical and	chemical composition	of solid wa	ste.	
CO 2	Understand the	optin	num 1	oute	planning f	or transport of solid wa	aste.		
CO 3	Understand the	techr	niques	s and	methods u	used in transformation,	conservatio	on, and	
	recovery of ma	terials	s fron	1 soli	d wastes.				
CO 4	Understand the	desig	gn of v	waste	e disposal s	systems.			

<u>Unit – I</u>

Introduction to Solid Waste

Definition - Types of solid waste - sources of solid waste - Characteristics - properties of solid wastes - Sampling of Solid wastes - Elements of solid waste management

<u>Unit – II</u>

Solid Waste Management

Solid waste generation - onsite handling - storage and processing - collection of solid wastes - Stationary container system and Hauled container systems - Route planning - transfer and transport.

<u>Unit – III</u>

Resource and Energy Recovery

Processing techniques - materials recovery systems - Composting - types of composting - Problems with composing – Pyrolisis – Gasification - RDF - recovery of energy from conversion products - materials and energy recovery systems.

<u>Unit – IV</u>

Landfills

Types and Construction of landfills - Design considerations - Life of landfills - Landfill

Problems - Lining of landfills - Leachate pollution and control - Landfills reclamation.

<u>Unit – V</u>

Hazardous Waste Management

Sources and characteristics - Effects on environment - Risk assessment - Disposal of hazardous wastes - Secured landfills, incineration - Biomedical waste disposal - E-waste management

Textbooks:

- 1. Tchobanoglous G, Theisen H and Vigil SA 'Integrated Solid Waste Management, Engineering Principles and Management Issues' McGraw-Hill, 1993.
- 2. Vesilind PA, Worrell W and Reinhart D, 'Solid Waste Engineering' Brooks/Cole Thomson Learning Inc., 2002.

- 1. CPHEEO Manual on Municipal Solid Waste Management 2000
- 2. Qian X, Koerner RM and Gray DH, 'Geotechnical Aspects of Landfill Design and Construction' Prentice Hall, 2002.
- 3. Peavy, H.S, Rowe, D.R., and G. Tchobanoglous, 'Environmental Engineering', McGraw Hill Inc., New York, 1985.

Course Title	Wa	nste t	o En	ergy	7	M. Tech. III Semester			
Course Code	Category	Но	urs/W	eek	Credits	Maximum Marks			
22OE122	Open Elective	L	T	P	С	Continuous Internal AssessmentEnd Exam4060	Total		
	(OEC)	3	0	0	3		60	100	
	Mid Exam D	uratio	on: 2	Hrs	1	End Exam Du	ration: 3 H	rs	
Course Ol	jectives:								
• To	create awarene	ss in s	tuden	ts of	energy con	nservation.			
• To	identify the use	e of di	fferer	it typ	es of Bio v	vaste energy resources	•		
• To	understand diff	erent	types	of bi	o waste en	ergy conservations.			
• To	detect different	waste	e conv	versio	on into diff	erent forms of energy.			
						nts will be able to			
CO 1						to produce electrical	power		
CO 2	Estimate the us	se of t	oio wa	aste to	produce of	electrical energy	-		

CO 3 Understanding different types of bio waste and its energy conversions

CO 4 Analyze the bio waste utilization and to avoid the environmental pollution

<u>Unit – I</u>

Introduction to Energy from Waste

Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digesters

<u>Unit – II</u>

Biomass Pyrolysis

Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

<u>Unit – III</u>

Biomass Gasification

Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

<u>Unit – IV</u>

Biomass Combustion

Biomass stoves – Improved chullahs, types, some exotic designs, fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

<u>Unit – V</u>

Biogas

Properties of biogas (Calorific value and composition) - Biogas plant technology and status -Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion anaerobic digestion -Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

Textbooks:

- 1. Non-Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Food, Feed and Fuel from Biomass, Chahal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.

- 1. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1989.
- 2. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996

Course Title	Sub soil exploration techniques M. Tech. III Semester									
Course Code	Category	Ho	Hours/Week		Credits	Maximum Marks				
22OE123	Open Elective	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
	(OEC)	3	0	0	3	40	60	100		
	Mid Exam D	Durati	on: 2	Hrs	1	End Exam Du	iration: 3	Hrs		
dete you • To proj	ermine that soil r understanding explore the so	's pro of that cientit	pertie at soil fic pr	s base 's proj incipl	ed on type perties. es used to	o site or in a profe and evaluate design o describe the ma g methods used to	i decisions jor engine	from		
		of th	is cou	rse. t	he students	s will be able to				
CO 1	Plan subsurface	e inv	estigat	tion t	based on the	he requirement of and number of bor	-	neering		
CO 2	Execute differen	nt sub	surfac	e exp	loration test	ts				
	Collect disturbe parameters	ed/und	listurb	ed sa	mples for la	aboratory tests and c	can sugges	t design		
	Expose differer design purpose.		hods	for es	timation of	dynamic soil prop	erties requ	ired for		

<u>Unit - I</u>

Introduction

Scopes and objectives of explorations – Planning a subsurface exploration – Stages in sub surface exploration – Explorations for preliminary and detailed design – Spacing and depth of exploration

<u>Unit - II</u>

Open Excavation and Borings of Exploration

Pits and Trenches – Drifts and Shafts – Methods of boring – Auger Borings – Wash Borings – Rotary Drilling –Percussion Drilling – Core Drilling

<u>Unit - III</u>

In-Situ Testing

Field tests – Standard Penetration Tests – Cone Penetration Tests – Plate Load Test, monotonic and cyclic –Field Permeability Tests – Instrumentation in soil engineering, strain gauges, resistance and inductance type

<u>Unit - IV</u>

Geophysical Methods:

Geophysical Methods: Types–Electrical Resistivity Methods – Electrical Profiling Method – Electrical Sounding Method – Seismic Methods – Seismic refraction method – Sub-soil Investigation Report.

<u>Unit - V</u>

Wave Measurements:

Cross Hole Tests (CHT), Downhole Tests (DHT), Spectral Analysis of Surface Waves, Seismic Refraction, Suspension Logging: Electromagnetic Wave Techniques: Ground Penetrating Radar (GPR), Electromagnetic Conductivity (EM), Surface Resistivity (SR), Magnetometer Surveys (MT)

Textbooks:

- 1. S.P. Brahma, Foundation Engineering, Tata McGraw-Hill Publishers, New Delhi, 1993.
- 2. V.N.S. Murthy, Soil Mechanics & Foundation Engineering, CBS Publishers & Distributors Pvt. Ltd., India, 2017.

- 1. Hvorslev, MJ, Sub Surface Exploration and Sampling of Soils for Civil Engineering Purpose, Water-ways Station, Vicksburg, Mississippi, 1949.
- 2. AraArman and NareshSamtani, Sub Surface Investigations, Federal Highway Administration, Arlington, Virginia, 2002.

Course Title	Diss	sertat	ion P	hase –	-1	M. Tech. III Semester			
Course Code	Category	Hours/Week			Credits	Maximum Marks			
2212307	Project	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		0	0	20	10	100		100	
	Mid Exam	Dura	ation	:	1	End Exam D	uration: -		
dev	purpose of di elop competer	icies :	for cr	ritically	y examining	tudents, the research g topics of their inte erminal or thesis proj	rest and p		
On success	ful completio	n of t	his co	ourse,	the student	ts will be able to			
CO1	Students will b	be exp	osed	to self	-learning va	rious topics			
	refereed journa	als an	d con	tact res	source perso	e such as books, nat			
CO 3	Students will l	earn t	o wri	te tech	nical report	s			
	Students will c their work in f		-			munication skills to p audience	present and	defend	

Description:

The Project Work will start in semester 3rd and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

IV Semester Syllabus

Course Title	Dissertation Phase – 2M. Tech. IV Semester												
Course Code	Category	Hours/Week		y Hours/Wee		Category Hour		Credits	Maximum N				
2212401	Project	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total					
		0 0 32	32	16	50	50	100						
-	Mid Exam	Dura	ation	:	1	End Exam Duration:							
On succes	sful completi	on o	f this	s cours	se, the stu	dents will be able to							
CO 1	Use different analytical too	-	erime	ental te	echniques,	different software / comp	utational /						
CO 2	Design and d	levelo	op an	exper	rimental se	t up/ equipment/test rig							
CO 3	Conduct test the results af			0		pments and draw logical	conclusion	is from					
CO 4	Able to either conversant w					ironment or in an indust	rial enviro	nment,					
CO 5	Able to prese	ent ar	id co	nvince	e their topi	c of study to the engineeri	ng commu	nity					

Description:

It is a continuation of Project work started in semester 3rd. He has to submit the report in prescribed format and also present a seminar. The dissertation should be presented in standard format as provided by the department. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study. The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a guide, co-guide etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his guide.