

K.S.R.M. COLLEGE OF ENGINEERING (UGC-AUTONOMOUS) Kadapa,Andhra Pradesh, India– 516 003 Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu. An ISO 14001:2004 & 9001: 2015 Certified Institution

Department of ECE M.Tech Embedded Systems and VLSI Course Structure

		Semester-I			1	1			
S.No	Course Code	Course Name	Category	L	Т	Р	IM	EM	Credits
1.	2284101	RTL Simulation and Synthesis With PLDs	PCC	3	0	0	40	60	3
2.	2284102	Microcontrollers and Programmable Digital Signal Processors	PCC	3	0	0	40	60	3
3.	2284103	Research methodology and IPR	-	2	0	0	40	60	2
	Profe	essional Elective Course-I							
4.	2284104	Parallel Processing							
	2284105	Digital Signal and Image Processing			0		40	(0)	2
	2284106	VLSI Signal Processing	PEC	3	0	0	40	60	5
	2284107	Design for testability							
	Profe	ssional Elective Course-II							
5.	2284108	Programming Languages for Embedded Systems							
	2284109	Micro-Electro Mechanical systems.	PEC	3	0	0	40	60	3
	2284110	CAD of Digital System							
	2284111	CPLD, FPGA Architectures and Applications.							
6.	2284112	RTL Simulation and Synthesis with PLDs Lab	PCC	0	0	4	50	50	2
7.	2284113	Microcontrollers and Programmable Digital Signal Processors Lab	PCC	0	0	4	50	50	2
8.	2270A02	Disaster Management	AC				40		0
									18

Semester-II												
S.No.	Course Code	Course Name	Category	L	Т	Р	IM	EM	Credits			
1.	2284201	Analog and Digital CMOS VLSI Design	PCC	3	0	0	40	60	3			
2.	2284202	Embedded and Real Time Operating Systems	PCC	3	0	0	40	60	3			
	Profe	ssional Elective Course-III										
	2284203	Memory Architectures										
3.	2284204	Advanced Computer Architecture	PEC	3	0	0	40	60	3			
	2284205	SoC Design										
	2284206	Low Power VLSI Design										
	Profess	ional Elective Course-IV										
	2284207	Communication Buses and										
		Interfaces										
4.	2284208	Network Security and Cryptography	PEC	3	0	0	40	60	3			
	2284209	Physical design automation										
	2284210	Nano Electronics										
5.	2284211	Analog and Digital CMOS VLSI Design Lab	PCC	0	0	4	50	50	2			
6.	2284212	Real Time Operating Systems Lab	PCC	0	0	4	50	50	2			
7.	2284213	Technical Seminar	PCC	0	0	4	100	0	2			
8.	2270A01	English for Research Paper Writing	AC				40		0			
	1		1	. <u> </u>			I		18			

Semester-III												
S.No.	Course	Course Name	Category	L	Т	Р	IM	EM	Credits			
	Code											
		Professional Elective Course-V										
	2284301	IOT and its Applications						60				
1	2284302	Hardware Software co-design	DEC	2	0	0	40		2			
1.	2284303	Artificial Intelligence	PEC	3	0	0		00	3			
	2284304	RFIC Design										
		Open Elective Course										
	2271305	Business Analytics										
	2271306	Industrial Safety					40					
	2271307	Operations Research		3		0						
2.	2271308	Cost Management of Engineering Projects	OEC		0			60	3			
	2271309	Composite Materials										
	2271310	Waste to Energy										
3.	2284311	Dissertation Phase-I	PR	0	0	20	100	0	10			
4	2254312	Co-Curricular activities		<u></u>					2			
			1		1		1	1	18			

	Semester-IV												
S.No.	Course Code	Course Name	Category	L	Т	Р	IM	EM	Credits				
1.	2284401	PR	0	0	32	50	50	16					
	L			L	L	1			16				

Course Title	RTL SIMU WITH PLD	LATIO S	N AND	M. Tech. ES &VLSI I Sem					
Course Code	Category	ours/We	Maxin	num Mar	ks				
2284101	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3			3	40	60	100	
Mid Exam Dur	ation: 2Hrs			End Exam Duration: 3Hrs					
Course Objectives:									

- To introduce Verilog HDL for the design and functionality verification of a digital circuit.
- > To understand the design of data path and control circuits for sequential machines
- > To introduce the concept of realizing a digital circuit using PLDs

Course Outcomes: On successful completion of this course, the students will be able to								
CO 1	CO 1 Understand the Static Timing Analysis and clock issues in digital circuits							
CO 2	Appreciate the analysis of finite state machine of a controlling circuit							
CO 3	Develop the Verilog HDL to design a digital circuit.							
CO 4	Verify the functionality of the digital designs using PLDs.							

Verilog HDL: Importance of HDLs, Lexical Conventions of Verilog HDL Gate level modeling: Built in primitive gates, switches, gate delays Data flow modeling: Continuous and implicit continuous assignment, delays Behavioral modeling: Procedural constructs, Control and repetition Statements, delays, function and tasks.

UNIT II

Digital Design: Design of BCD Adder, State graphs for control circuits, shift and add multiplier, Binary divider. FSM and SM Charts: Finite state diagram, Implementation of sequence detector using FSM, State machine charts, Derivation of SM Charts, Realization of SM Chart, Implementation of Binary Multiplier.

UNIT III

ASIC Design Flow: Simulation, simulation types, Synthesis, synthesis methodologies, translation, mapping, optimization, Floor planning, Placement, routing, Clock tree synthesis, Physical verification.

UNIT IV

Static Timing Analysis: Timing paths, Meta-stability, Clock issues, Need and design strategies for multi-clockdomain designs, setup and hold timeViolations, stepsto removeSetup and hold timeviolations.

UNIT V

Digital Design using PLD's: ROM, PLA, PAL- Registered PAL's, Configurable PAL's, GAL. CPLDs: Features, Programming and Applications using Complex Programmable logic devices. FPGAs: Field Programmable gate arrays Logic blocks, routing architecture, design flow.

TEXTBOOKS:

- 1. Samir Palnitkar, "Verilog HDL, A Guide to Digital Design and Synthesis", 2nd Edition, 2003.
- 2. Charles H.Roth, "Fundamentals of Logic Design", Cengage Learning, 5th Edition, 2010.
- 3. Bhasker J, "Verilog HDL Synthesis A Practical Primer", 1st edition, 1998.

REFERENCES:

- 1. Donald D Givone, "Digital Principles and Design", TMH, 2016
- 2. Bob Zeidman, "Designing with FPGAs & CPLDs", CMP Books, 2002.
- 3. Richard S. Sandige, "Modern Digital Design", MGH, International Edition, 1990

Course	Title	MICROCO PROGRAM PROCESSO	NTROL [MABL] DRS	LERS A	IGNAL	M. Tech. ES &VLSI I Sem					
Course	Code	Category	Ho	urs/We	ek	Credits	Maximum Marks				
2284102		РСС	L	Т	Р	P C Intern Assessm		End Exams	Total		
			3			3	40 60 10				
Mid Exa	am Dur	ation: 2Hrs					End Exam	Duration	: 3Hrs		
Course	 Objecti To feat To To proc 	understand, co ures/peripheral be able to ident develop small a cessor based pla	mpare a s based o ify and c pplication atform.	nd sele on requir haracter ons by u	ct AR rement ize arc tilizing	M processo is of embed whitecture of g the ARM	or core based ded application Programmable processor core	SoC with is. e DSP Pro and DSP	several		
Course	Outcon	nes: On success	stul com	pletion of	of this	course, the	students will be	e able to			
CO 1	Comp	are and select A	ARM pro	cessor c	ore ba	sed SoC wi	th several featu	res/peripl	nerals		
	based on requirements of embedded applications.										
CO 2	Identify and characterize architecture of Programmable DSP Processors										
CO 3	Develop small applications by utilizing the ARM processor core and DSP processor										
	based	pased platform.									

ARM Cortex-M3 processor: Applications, Programming model – Registers, Operation modes, Exceptions and Interrupts, Reset Sequence Instruction Set, Unified Assembler Language, Memory Maps, Memory Access Attributes, Permissions, Bit-Band Operations, Unaligned and Exclusive Transfers. Pipeline, Bus Interfaces.

UNIT II

Exceptions, Types, Priority, Vector Tables, Interrupt Inputs and Pending behavior, Fault Exceptions, Supervisor and Pendable Service Call, Nested Vectored Interrupt Controller, Basic Configuration.

UNIT III

LPC 17xx Microcontroller- Internal memory, GPIOs, Timers, ADC, UART and other serial interfaces, PWM, RTC, WDT.

UNIT IV

Programmable DSP (P-DSP) Processors: Harvard architecture, Multi port memory, architectural structure of P-DSP- MAC unit, Barrel shifters, Introduction to TI DSP processor family.

UNIT V

VLIW architecture and TMS320C6000 series, architecture study, data paths, cross paths, Introduction to Instruction level architecture of C6000 family, Assembly Instructions memory addressing, for arithmetic, logical operations. Code Composer Studio for application development for digital signal processing.

TEXT BOOKS:

- 1. Joseph Yiu, "The definitive guide to ARM Cortex M3", Elsevier, 2nd Edition.
- 2. Venkatramani B. and Bhaskar M. "Digital Signal Processors: Architecture, Programming and Applications", TMH, 2nd Edition
- 3. Sloss Andrew N, Symes Dominic, Wright Chris, "ARM System Developer's Guide: Designing and Optimizing", Morgan Kaufman Publication

- 1. Steve furber, "ARM System-on-Chip Architecture", Pearson Education
- 2. Frank Vahid and Tony Givargis, "Embedded System Design", Wiley
- 3. Technical References and user manuals on <u>www.arm.com</u>.

Course	Title	RESEARCH AND IPR	METH	ODOL	OGY		M. Tech ES	& VLSI	I Sem		
Course	Code	Category	He	ours/We	eek	Credits	Maxi	mum Ma	rks		
2284	103	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			2	0		2	40	60	100		
Mid Exa	am Dui	ation: 2Hrs					End Exa	am Durat	ion: 3Hrs		
Course Objectives:											
	To understandresearchproblemformulation.										
> 7	To Analyzeresearch related information										
> 7	To Followresearchethics										
> 1	To understanding that when IPR would take such important place in growth of individuals										
8	&nation	it is needless to	empha	sis the n	eed of in	nformation	about Intellec	tual Prope	erty Right		
t	o bepro	motedamongstu	dents ir	genera	l&engin	eeringin p	articular.	1			
> 7	Fo unde	rstand that IPR	protecti	on provi	ides an i	ncentive to	o inventors for	further re	search		
v	vork an	dinvestment in]		which le	eads to c	reation of	new and better	products	and in		
v t	voik ali urn brir	an vestment m	$\mathbf{X} \mathbf{U} \mathbf{D},$	which k		onofito	new and better	products,			
C			fine gro		social D		- 4 1 4 11 1-	1-1 - 4 -			
Course	Outcor	nes: On success	ful com	pletion	of this c	ourse, the	students will b	e able to			
01	Under	stand research p	oroblem	Iormula	ation.						
CO 2	Analy	ze research rela	ted info	rmation							
CO 3	Followresearchethics										
CO 4	Apply PatentRights in filing.										
CO 5	Describe new developments in IPR.										

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting are search problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, Analysis, interpretation, Necessary instrumentations.

UNIT II

Effective literature studies approaches, Analysis Plagiarism and Research ethics. Effective technical writing, How to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

UNIT III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright, Process of Patenting and Development: Technological research, Innovation, Patenting, Development. International Scenario: International Cooperation on Intellectual Property, Procedure for grants of patents, Patent in gender PCT.

UNITIV

Patent Rights: Scope of Patent Rights, Licensing and transfer of technology, Patent in formation and databases, Geographical Indications.

UNIT V

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

TEXT BOOKS:

- Stuart Melville and Wayne Goddard, "Research Methodology: An Introduction for Science & Engineering students"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, "Research Methodology: A Step by Step Guide for beginners", 2nd Edition,

- 1. Mayall, "Industrial Design", Mc Graw Hill, 1992.
- 2. Niebel, "Product Design", Mc Graw Hill, 1974.
- 3. Asimov, "IntroductiontoDesign", PrenticeHall, 1962.
- 4. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 5. T. Ramappa, "Intellectual Property Rights Under WTO", S.Chand, 2008

Course 7	itle	PARALLEL	PROC	ESSING		M. Tech ES & VLSI I Sem					
Course (ode	Category	Ho	urs/Wee	ek	Credits	Maxin	num Mar	ks		
22841	94	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3			3	40	60	100		
Mid Exa	n Durat	ion: 2Hrs			End Exam Duration: 3Hrs						
Course C	Objectives:										
×	> Tooverview of the architectures and communication networks employed in parallel										
	computers.										
×	The c	ourse covers	the four	ndations	for de	evelopment	of efficient pa	arallel alg	orithms,		
	includ	ing examples	s from 1	elativel	y simp	le numeric	al problems, s	orting, ar	nd graph		
	proble	ems.			, <u> </u>		•		0 1		
Course O	utcome	s: On success	ful com	pletion of	of this	course, the	students will be	e able to			
CO 1	Understa	and parallel p	rocessin	g and pi	pelinin	g technique	es.				
CO 2	dentify	limitations of	differer	nt archite	ectures	of compute	er				
CO 3	Analysis quantitatively the performance parameters for different architectures										
CO 4	Investigate issues related to compilers and instruction set based on type of architectures										
CO 5	Develop parallel programming techniques.										

Overview of Parallel Processing and Pipelining, Performance analysis, Scalability

UNIT II

Principles and implementation of Pipelining, Classification of pipelining processors, Advanced pipelining techniques, Software pipelining

UNIT III

VLIW processors Case study: Superscalar Architecture- Pentium, Intel Itanium Processor, Ultra SPARC, MIPS on FPGA, Vector and Array Processor, FFT Multiprocessor Architecture

UNIT IV

Multithreaded Architecture, Multithreaded processors, Latency hiding techniques, Principles of multithreading, Issues and solutions

UNIT V

Parallel Programming Techniques: Message passing program development, Synchronous and asynchronous message passing, Shared Memory Programming, Data Parallel Programming, Parallel Software Issues. Operating systems for multiprocessors systems Customizing applications on parallel processing platforms

- 1. Kai Hwang, Faye A. Briggs, "Computer Architecture and Parallel Processing", MGH International Edition
- 2. Kai Hwang, "Advanced Computer Architecture", TMH
- 3. V. Rajaraman, L. Sivaram Murthy, "Parallel Computers", PHI.

- 1. William Stallings, "Computer Organization and Architecture, Designing for performance "Prentice Hall, Sixth edition
- 2. Kai Hwang, Zhiwei Xu, "Scalable Parallel Computing", MGH
- 3. David Harris and Sarah Harris, "Digital Design and Computer Architecture", Morgan

Course	Title	DIGITAI	L SIGN PROC	NAL AN ESSIN	ND IM. G	AGE	M. Tech. ES	& VLSI	I Sem		
Course	Code	Category	He	ours/We	ek	Credits	Maxin	um Mar	ks		
22841	105	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3	0		3	40	60	100		
Mid Exa	ım Dur	ation: 2Hrs			End Exam	Duration	n: 3Hrs				
Course (Objecti	ves:									
	To study the discrete time signals and system in various domains										
	To learn the concepts of design of digital filtering										
		➢ To study d	ifferent	image e	nhancer	nent, Resto	oration and con	npression			
		techniques	5	-				-			
		\succ To underst	and ima	ige segn	nentation	ı algorithn	18				
Course (Outcon	nes: On success	ful com	nletion (of this c	ourse the	students will h	e able to			
CO 1	Analyz	ze discrete-time	signals	and sys	tems in	various do	mains (i.e.Tim	e. Z and F	Fourier)		
CO 2	Design	the digital filte	ers (both	IIR and	FIR) fi	om the giv	ven specificatio	ons)		
CO 3	Analyz	ze the quantizat	ion effe	cts in di	pital filt	ers and un	derstand the ba	sics of im	age		
000	sampli	ng quantizatio	n and in	age trar	sforme	cib und un			luge		
<u> </u>	sampling, quantization and image transforms.										
004	Understand the concepts of image enhancement, image restoration, image segmentation										
	and Color Image processing										
CO 5	Analyz	ze various imag	e compi	ression t	echniqu	es					

Review of Discrete Time signals and systems, Characterization in time, Z and Fourier domain, Fast Fourier Transform using Decimation in Time (DIT) and Decimation in Frequency (DIF) Algorithms.

UNIT II

IIR Digital Filters: Introduction, Analog filter approximations–Butterworth and Chebyshev, Design of IIR Digital filters from analog filters using Impulse Invariance, Bilinear Transformation methods.

FIR Digital Filters: Introduction, Design of FIR Digital Filters using Window Techniques, Frequency Sampling technique, Comparison of IIR & FIR filters.

UNIT III

Analysis Of Finite Word length Effects: The Quantization Process and Errors, Quantization of Fixed-Point Numbers, Quantization of Floating- Point Numbers ,Analysis of Coefficient Quantization effects.

Introduction To Digital Image Processing: Introduction, components in image processing system, Applications of Digital image processing, Image sensing and acquisition, Image sampling, Quantization, Basic Relationships between pixels, Image Transforms: 2D-DFT, DCT, Haar Transform.

UNIT IV

Image Enhancement: Intensity transformation functions, histogram processing, fundamentals of spatial filtering, smoothing spatial filters, sharpening spatial filters, the basics of filtering in the frequency domain, image smoothing using frequency domain filters, Image Sharpening using

frequency domain filters ,Selective filtering.

Image Restoration: Introduction, restoration in the presence of noise only-Spatial Filtering, Periodic Noise Reduction by frequency domain filtering, Linear, Position –Invariant Degradations, Estimating the degradation function, Inverse filtering, Minimum mean square error (Wiener) filtering.

Image Segmentation: Fundamentals, point, line, edge detection, thresholding, and region based segmentation.

UNIT V

Image Compression: Fundamentals, Basic compression methods: Huffman coding, Arithmetic coding, Run-Length coding, Block Transform coding, Predictive coding, Wavelet coding.

Color Image Processing: color fundamentals, color models, pseudo color image processing, basics of full color image processing, color transformations, smoothing and sharpening. Image segmentation based on color, noise in color images, color image compression.

TEXT BOOKS:

- 1. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Principles, Algorithms, and Applications, Pearson Education, PHI, 2007.
- S. K. Mitra. "Digital Signal Processing A Computer based Approach", TMH, 3rd Edition, 2006
- 3. Rafael C. Gonzalez and Richard E.Woods, "Digital Image Processing", Pearson Education, 2011.

- 1. Andreas Antoniou, "Digital Signal Processing", TATA Mc Graw Hill, 2006
- 2. M H Hayes, "Digital Signal Processing", Schaum"s Outlines, TATA Mc Graw Hill, 2007.
- 3. Anil K. Jain, "Fundamentals of Digital Image Processing,", Prentice Hall of India, 2012.

Course	Title	VLSI SIGN	AL PRO	OCESSI		M. Tech ES	& VLSI	I Sem			
Course	Code	Category	Ho	urs/Wee	ek	Credits	Maxin	num Mar	ks		
2284106		PEC	L	Т	Р	С	Continuous Internal Assessment	Total			
			3			3	40	60	100		
Mid Exa	am Dur	am Duration: 2Hrs End Exam Duration: 3Hrs									
Course	$\begin{array}{c} \textbf{Objecti} \\ \textbf{>} & To \\ \textbf{>} & To \\ \textbf{>} & To \\ \hline \textbf{Outcome} \end{array}$	ves: understand the s understand the s understand the	static, sn DSP arcl operatic	nall sign hitecture on of des	al and es. ign asj	large signa	l modeling of M cessors.	MOS Tran	sistor.		
Course				pletion		course, me					
CO I	Ability	y to modify the	existing	or new	DSP a	rchitectures	suitable for V	LSI.			
CO 2	Under	stand the conce	pts of fo	lding an	ld unfo	lding algor	ithms and appli	cations.			
CO 3	Analyze to implement fast convolution algorithms.										
CO 4	Develop Low power design aspects of processors for signal processing and wireless applications.										

Introduction to DSP: Typical DSP algorithms, DSP algorithms benefits, Representation of DSP algorithms Pipelining and Parallel ProcessingIntroduction, Pipelining of FIR Digital filters, Parallel Processing, Pipelining and Parallel Processing for Low Power Retiming Introduction, Definitions and Properties, Solving System of Inequalities, Retiming Techniques

UNIT II

Folding and Unfolding: Folding - Introduction, Folding Transform, Register minimization Techniques, Register minimization in folded architectures, folding of Multirate systems. Unfolding - Introduction, An Algorithm for Unfolding, Properties of Unfolding, Critical Path, Unfolding and Retiming, Applications of Unfolding

UNIT III

Systolic Architecture Design: Introduction, Systolic Array Design Methodology, FIR Systolic Arrays, Selection of Scheduling Vector, Matrix Multiplication and 2D Systolic Array Design, Systolic Design for Space Representations contain Delays.

UNIT IV

Fast Convolution: Introduction, Cook, Toom Algorithm, Winogard algorithm, Iterated Convolution, Cyclic Convolution, Design of Fast Convolution algorithm by Inspection

UNIT V

Digital lattice filter structures, Bit level arithmetic, Architecture, Redundant arithmetic. Numerical Strength reduction, Synchronous wave and asynchronous pipe lines, Low power design. Low Power Design: Scaling Vs Power Consumption, Power Analysis, Power Reduction techniques, Power Estimation Approaches

TEXT BOOKS:

- 1. Keshab K. Parhi, "VLSI Digital Signal Processing Systems, Design and Implementation", Wiley, Inter Science, 1999.
- 2. Mohammad Isamail and Terri Fiez, "Analog VLSI Signal and Information Processing", McGraw Hill, 1994.

- 1. S. Y. Kung, H. J. White House, T. Kailath, "VLSI and Modern Signal Processing", Prentice Hall, 1985.
- 2. Jose E. France, Yannis Tsividls, "Design of Analog Digital VLSI Circuits for Telecommunications and Signal Processing", Prentice Hall, 1994.

Course	Title	DESI	GN FOI	R TEST	ABIL	ITY	M. Tech. ES	&VLSI			
Course	Code	Category	Ho	urs/Wee	ek	Credits	Maxin	um Mar	ks		
2284	107	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3			3	40	60	100		
Mid Exam Duration: 2HrsEnd Exam Du								Duration	: 3Hrs		
Course	Course Objectives:										
	≻ T	oanalyze the dig	gital circ	uits with	h the p	resence of f	faults.				
	≻ T	o generate the t	est patte	rns.							
	≻ T	o understand the	e concep	ot of con	trollab	ility and obs	servability.				
	≻ T	o determine the	built in	self test.							
Course	Outcon	nes: On success	ful com	pletion of	of this	course, the	students will b	e able to			
CO 1	Design	n digital circuits	includi	ng vario	us leve	els of model	ling and differe	ent approa	ches for		
	simula	ation.									
CO 2	Analy	ze the digital cir	cuits w	ith the p	resence	e of faults a	nd evaluation of	of given te	est set		
	for fat	ılt coverage.									
CO 3	Create	e test patterns fo	r detecti	ng singl	e stuck	c faults in co	ombinational a	nd sequen	ntial		
	circuit	S.									
CO 4	Descri	ibe controllabili	ty and o	bservabi	ility an	d schemes t	for introducing	testabilit	y into		
	digital circuits which will make circuits more testable with ease and improve fault										
	coverage.										
CO 5	Deterr	nine built in sel	f test (B	IST) and	l diffei	ent approad	ches for introdu	ucing BIS	T into		
	logic circuits memories and embedded cores.										

Introduction to Test and Design for Testability (DFT) Fundamentals. Modeling: Modeling digital circuits at logic level, register level and structural models. Levels of modeling. Logic Simulation: Types of simulation, Delay models, Element evaluation, Hazard detection, Gate level event driven simulation.

UNIT II

Fault Modeling – Logic fault models, Fault detection and redundancy, Fault equivalence and fault location. Single stuck and multiple stuck – Fault models. Fault simulation applications, General techniques for Combinational circuits.

UNIT III

Testing for single stuck faults (SSF) – Automated test pattern generation (ATPG/ATG) for SSFs in combinational and sequential circuits, Functional testing with specific fault models.Vector simulation – ATPG vectors, formats, Compaction and compression, Selecting ATPG Tool.

UNIT IV

Design for testability – testability trade-offs, techniques. Scan architectures and testing – controllability and absorbability, generic boundary scan, full integrated scan, storage cells for scan design. Board level and system level DFT approaches. Boundary scan standards. Compression techniques – different techniques, syndrome test and signature analysis.

UNIT – V

Built-in self-test (BIST) – BIST Concepts and test pattern generation.Specific BIST Architectures – CSBL, BEST, RTS, LOCST, STUMPS, CBIST, CEBS, RTD, SST, CATS, CSTP, BILBO. Brief ideas on some advanced BIST concepts and design for self-test at board level. Memory BIST (MBIST): Memory test architectures and techniques – Introduction to memory test, Types of memories and integration, embedded memory testing model. Memory test requirements for MBIST.Brief ideas on embedded core testing.

TEXT BOOKS:

- 1. Miron A bramovici, Melvin A. Breur, Arthur D. Friedman, "Digital Systems Testing and Testable Design", Jaico Publishing House, 2001.
- 2. Alfred Crouch., "Design for Test for Digital ICs & Embedded Core Systems", Prentice Hall.

- 1. Robert J. Feugate, Jr., Steven M. Mentyn, "Introduction to VLSI Testing", Prentice Hall, Englehood Cliffs, 1998.
- 2. Fault Tolerant & Fault Testable Hardware Design- Parag K. Lala, PHI, 1984

Course	Title	PROGRAMM EMBEDDED	AING L SYSTI	ANGU. EM	AGES	FOR	M. Tech. ES	&VLSI	[Sem				
Course	Code	Category	Но	urs/We	ek	Credits	Maxin	num Mar	ks				
2284	108	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
			3 3 40 60 100										
Mid Exa	am Dur	ation: 2Hrs	on: 2HrsEnd Exam Duration: 3Hrs										
Course	e Objectives:												
r ∢	o explo	ore the difference	e betwe	en gene	ral pur	pose progra	mming langua	ges and					
E	Embedd	ed Programmin	g Langi	lage.									
r <	°o provi	de case studies	for prog	grammin	ıg in er	nbedded sys	stems.						
Course	Outcon	nes: On success	ful com	pletion	of this	course, the	students will be	e able to					
CO 1	Under	stand the basics	of Emb	edded C	C with 1	reference to	8051.						
CO 2	Under	stand how to ha	indle co	ntrol and	l data p	oins at hardy	ware level.						
CO 3	Capab	le of introducin	g into o	bjective	nature	of Embedd	ed C.						
CO 4	Under	stand the specif	ïcations	of real t	time er	nbedded pro	ogramming wit	h case stu	dies				

Programming Embedded Systems in C Introduction, What is an embedded system, Which processor should you use, Which programming language should you use, Which operating system should you use, How do you develop embedded software, Conclusions

Introducing the 8051 Microcontroller Family

Introduction, What"s in a name, The external interface of the Standard 8051, Reset requirements ,Clock frequency and performance, Memory issues, I/O pins, Timers, Interrupts, Serial interface, Power consumption ,Conclusions

UNIT II

Reading Switches Introduction, Basic techniques for reading from port pins, Example: Reading and writing bytes, Example: Reading and writing bits (simple version), Example: Reading and writing bits (generic version), The need for pull-up resistors, Dealing with switch bounce, Example: Reading switch inputs (basic code), Example: Counting goats, Conclusions

UNIT III

Adding Structure to your Code Introduction, Object-oriented programming with C, The Project Header (MAIN.H), The Port Header (PORT.H), Example: Restructuring the "Hello Embedded World" example, Example: Restructuring the goat-counting example, Further examples, Conclusions

UNIT IV

Meeting Real-Time Constraints Introduction, Creating "hardware delays" using Timer 0 and Timer 1, Example: Generating a precise 50 ms delay, Example: Creating a portable hardware delay, Why not use Timer 2?, The need for "timeout" mechanisms, Creating loop timeouts, Example: Testing loop timeouts, Example: A more reliable switch interface, Creating hardware timeouts, Example: Testing a hardware timeout, Conclusions

UNIT V

Case Study: Intruder Alarm System Introduction, The software architecture, Key software components used in this example, running the program, the software, Conclusions

TEXT BOOKS:

- 1. Michael J. Pont "Embedded C", A Pearson Education
- Mazidi, "PIC Microcontroller and Embedded Systems: Using assembly and C for PIC 18.

- 1. Mazidi, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C".
- 2. Michael Barr, "Programming Embedded Systems in C & C++".

Course	Title	MICRO-E	LECTI SYS	RO ME TEMS.	ECHAN	ICAL	M. Te	ch ES &	VLSI I Sem				
Course	Code	Category	He	ours/We	eek	Credits	Ma	ximum N	/Iarks				
22841	109	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
			3	0		3	40	60	100				
Mid Exa	am Dur	ation: 2Hrs					End Exam Duration: 3Hrs						
Course	Objecti	ves:											
> A	Able to 1	know a new and	l upcom	ing inter	rdiscipli	nary area.							
r <	o unde	rstand generatir	ig better	electron	nic gadg	gets							
> A	Able to I	know technolog	jes invo	lving m	iniaturiz	zed Electri	cal, Mechanica	and Elec	ctro-mechanical				
d	levices	-		•									
≻ T	o unde	rstand a new str	eam of	Electron	nics-ME	MTRONIC	CS.						
Course	Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to					
CO 1	A new	and upcoming	interdis	ciplinar	v area.	•							
				r ~									
CO 2	Gener	ating better elec	tronic g	adgets									
CO 3	Techn	ologies involvir	ng minia	turized	Electric	al, Mechar	nical and Electr	ro-mechar	nical devices				
CO 4	A new	stream of Elec	tronics-1	MEMTE	RONICS	5							

Introduction, Basic Structures of MEM Devices – (Canti Levers, Fixed Beams diaphragms). Broad Response of MEMS to Mechanical (force, pressure etc.) Thermal, Electrical, Optical and Magnetic stimuli, Compatibility of MEMS with VLSI Applications in Electronics, Broad Advantages and Disadvantages of MEMS from the point of Power Dissipation, Leakage etc.

UNIT II

Review of Mechanical Concepts like Stress, Strain, Bending Moment, and Deflection Curve. Differential equations describing the Deflection under Concentrated Force, Distributed Force, Deflection Curves for Canti Levers – Fixed beam. Electrostatic Excitation – Columbic Force between the Fixed and Moving Electrodes. Deflection with voltage in C.L, Deflection Vs Voltage Curve, Critical Deflection, Description of the above w.r.t. Fixed Beams. Fringe Fields – Field Calculations using Laplace Equation. Discussion on the Approximate Solutions – Transient Response of the MEMS.

UNIT III

Two Terminal MEMS – capacitance Vs Voltage Curve – Variable Capacitor. Applications of Variable Capacitors. Two Terminal MEM Structures. Three Terminal MEM structures – Controlled Variable Capacitors – MEM as a Switch and Possible Applications.

UNIT IV

MEM Circuits & Structures for Simple GATES – AND, OR, NAND, NOR, Exclusive OR, simple MEM Configurations for Flip-Flops Triggering, Applications to Counters, Converters.

Applications for Analog Circuits like Frequency Converters, Wave Shaping. RF Switches for Modulation. MEM Transducers for Pressure, Force Temperature.Optical MEMS.

UNIT V

MEM Technologies: Silicon Based MEMS – Process Flow – Brief Account of Various Processes and Layers like Fixed Layer, Moving Layers, Spacers etc., Etching Technologies. Metal Based MEMS: Thin and Thick Film Technologies for MEMS. PROCESS flow and Description of the Processes.Status of MEMS in the Current Electronics scenario.

TEXT BOOKS:

- 1. Gabriel. M. Reviez, R.F. "MEMS Theory", Design and Technology", Jhon Wiley & Sons, 2003.
- 2. Thimo Shenko, "Strength of Materials", CBS Publishers & Distributors.
- 3. K. Pitt, M.R. Haskard, "Thick Film Technology and Applications", 1997.

REFERENCE BOOKS:

1. Wise K.D. (Guest Editor), "Special Issue of Proceedings of IEEE", Vol.86, No.8, Aug 1998.

2. Ristic L. (Ed.) Sensor Technology and Devices, Artech House, London 1994

Course	Title	CAD OF	DIGI	TAL S	YSTE	MS.	M. Te	ch ES &	VLSI I Sem				
Course	Code	Category	Ho	ours/We	ek	Credits	Ma	ximum N	Aarks				
22841	110	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
			3	0		3	40	60	100				
Mid Exa	ım Dur	ation: 2Hrs					End Exam Duration: 3Hrs						
Course (> T S > T > T	Objecti 'o unde ystems 'o study 'o be ab	ves: rstand the funda various phases le to demonstra	of CAI	s of CAI D, includ nowledg	D tools f ling sim ge of cor	for modelin ulation, ph nputationa	ng, design, test nysical design, l algorithms ar	and verif test andV nd tools fo	ication of VLSI erification. or CAD.				
Course (Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to					
CO 1	Funda	mentals of CA	D tools f	for mode	eling, de	esign, test a	and verification	n of VLSI	systems.				
CO 2	Under	rstand various p	hases of	f CAD, i	ncludin	g simulatio	on, physical de	sign, test	andverification.				
CO 3	Demo	onstrate knowled	lge of co	omputat	ional alg	gorithms a	nd tools for CA	AD.					

Introduction to VLSI Methodologies – Design and Fabrication of VLSI Devices, Fabrication Materials, Transistor Fundamentals, Fabrication of VLSI Circuits, Design Rules Layout of Basic Devices, Fabrication Process and its Impact on Physical Design, Scaling Methods, Status of FabricationProcess, Issues related to the Fabrication Process, Future of Fabrication Process, Solutions for Interconnect Issues, Tools for Process Development.

UNIT II

VLSI design automation tools – Data Structures and Basic Algorithms, Basic Terminology, Complexity Issues and NP-hardness, Basic Algorithms, Basic Data Structures, Graph theory and Computational complexity, Tractable and intractable problems.

UNIT III

General purpose methods for combinational optimization – Partitioning- Problem Formulation ,Classification of Partitioning Algorithms, Group Migration Algorithms , Simulated Annealing Simulated Evolution, Other Partitioning Algorithms Performance Driven Partitioning Floor planning- Chip planning, Pin Assignment , Integrated Approach, Placement- Problem Formulation, Classification of Placement Algorithms, Simulation Based Placement Algorithms , Partitioning Based Placement Algorithms, Performance Driven Placement, Routing -Global Routing,Problem Formulation,Classification of Global Routing Algorithms, Maze Routing Algorithms, Line-Probe Algorithms, Shortest Path Based Algorithms. Steiner Tree based Algorithms Integer Programming Based Approach, Performance Driven Routing.

UNIT IV

Simulation- Gate- level Modelling and Simulation, Switch-level Modeling and Simulation, Logic Synthesis and Verification - Introduction to Combinational Logic Synthesis , Binary-decision Diagrams, Two-level Logic Synthesis, High-level Synthesis- Hardware Models for High level

Synthesis, Internal Representation of the Input Algorithm, Allocation, Assignment and Scheduling.

UNIT V

MCMs-VHDL-Verilog-implementation of adders, Subtractors, Multiplexers, Demultiplexers and counters using VHDL.

TEXT BOOKS:

1. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation".

2. S.H. Gerez, "Algorithms for VLSI Design Automation".

- 1. S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis"
- 2. Navabi, "VHDL Analysis & Modeling of digital systems"

Course '	Title	CPLD, FPC	A AR PPLIC	CHITE CATIO	CTUR NS.	S AND	M. Tech. ES	5 & VLSI	I Sem				
Course	Code	Category	Ho	ours/We	ek	Credits	Ma	iximum N	Iarks				
22841	11	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total				
			3	0		3	40	60	100				
Mid Exa	m Dur	ation: 2Hrs					En	d Exam D	Ouration: 3Hrs				
Course (Objecti	ves:											
> In	npleme	ent given task u	sing FPO	GΑ									
> D	evelop	test pattern to t	est the H	FPGA									
≻ D	esign a	product level a	pproach	n utilizin	g FPGA	As.							
	C				0								
Course (Outcon	nes: On success	ful com	pletion of	of this c	ourse, the	students will b	e able to					
CO 1	Differ	rentiate betweer	n ROM,I	PAL,PL	A,SPLI	D,CPLD,FF	PGA						
CO 2	Comp	are the features	of Vari	ous CPL	Ds inte	erms of the	ir architecture,	Logic blo	ocks				
CO 3	Comp	are the features	of Vari	ous FPC	GAs inte	erms of the	ir Architecture	, Configu	rable logic				
	block a	and routing.						2	_				
CO4	Gain k	nowledge on ro	outing al	gorithm	s adopt	ed in FPGA	As.						
CO5	T 4		!		-1	1:1		T ''					
005	Test a	particular PLD	using va	arious te	cnnique	es like desi	gn validation,	I iming ve	erification.				

Programmable logic: Programmable read only memory (prom), Programmable Logic Array (PLA), Programmable Array Logic (PAL). Sequential Programmable Logic Devices (SPLDs).Programmable Gate Arrays (PGAs), CPLD and FPGA, design flow using FPGA, programming technologies.

UNIT II

FPGAs: Field Programmable Gate Arrays – Logic blocks, routing architecture, Logic cells and features of commercially available FPGA's- XILINX XC4000, Virtex-II FPGA's, XILINX SPARTAN II, Alteras Act1, Act2, Act3 FPGA's, Actel FPGA's, AMD FPGA.

UNITIII

CPLD's: complex programmable logic devices, logic block, I/O block, interconnect matrix, logicblocks and features of Altera flex logic 10000 series CPLD's, max 7000 series CPLD's, AT & T – ORCA's (Optimized Reconfigurable Cell Array), Cypres flash 370 device technology, lattice PLSI's architectures.

UNIT IV

Placement: objectives, placement algorithms: Mincut-Based placement, iterative improvement placement, simulatedannealing.Routing: objectives, segmented channel routing, Maze routing, Routability estimation, Net delays, computing signal delay in RC tree networks.

UNIT V

Digital Front End and back End tools for FPGAs & ASICs, FPGA implementation steps .Verification: introduction, logic simulation, design validation, timing verification .Testing

concepts: failures, mechanisms and faults, fault coverage, ATPG methods, and programmability failures.

TEXTBOOKS:

- 1. P.K. Chan & S. Mourad, "Digital Design Using Field Programmable Gate Array", Pearson Education 2009.
- 2. S. Trimberger, Edr, "Field Programmable Gate Array Technology", Kluwer Academic Publications, 1994.

References:

- 1. Old Field, R. Dorf, "Field Programmable Gate Arrays", John Wiley & Sons, New york, 1995.
- 2. Brown, R. Francis, J. Rose, Z. Vransic, "Field Programmable Gate array", Kluwer Publn, 1992.
- 3. Manuals from Xilinx, Altera, AMD, Actel.

Course	Title	RTL SIMU WITH PLD	LATIO S LAB	N AND	SYNT	HESIS	M. Tech. ES	&VLSI	[Sem			
Course	Code	Category	Ho	urs/We	ek	Credits	Maxin	um Mar	ks			
2284	112	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
					4	2	50	50	100			
							End Exam Duration: 3Hrs					
Course > 7 > 7 > 7	Objecti Fo imple Fo imple Fo desig	ement the Veril ement the Veril on FSM, Vendir	og code og code ig Mach	for com for Disc ine.	binatio	onal and sec ourier Trans	quential circuits sform/FFT algo	s. prithm				
Course	Outcon	nes: On success	ful com	pletion of	of this	course, the	students will b	e able to				
CO 1	To des	sign various cor	nbinatio	nal and	sequer	tial circuits	8.					
CO 2	To des	sign FSM mach	ines, Ve	nding m	achine	es.						
CO 3	Identif comm	fy, formulate, so unication system	olve and ns etc u	implem sing RT	ent pro L desig	oblems in si gn tools.	ignal processing	g,				
CO 4	Realiz	e single port SH	RAM in	Verilog								
CO 5	Impler	ment UART/US	ART in	Verilog	ç.							

LISTOFEXPERIMENTS:

- 1. Verilog implementation of 8:1 Mux/Demux,
 - 2. Verilog implementation of Full Adder, 8-bit Magnitude comparator.
 - 3. Verilog implementation of 3-bit Synchronous Counters.
 - 4. Verilog implementation of Parity generator.
 - $5. \ Sequence \ generator/detectors, \ Synchronous \ FSM-Mealy \ and \ Moore \ machines.$
 - 6. Vending machines Traffic Light controller, ATM, elevator control.
 - 7.PCI Bus & arbiter and downloading on FPGA.
 - 8.UART/ USART implementation in Verilog.
 - 9. Realization of single port SRAM in Verilog.
 - 10. Verilog implementation of Arithmetic circuits like serial adder/ subtractor.
 - 11. Verilog implementation of paralleladder/subtractor, serial/parallel multiplier.
 - 12. Discrete Fourier transform/Fast Fourier Transform algorithm in Verilog.

Course	Title	MICROCO PROGRAM PROCESSO	NTROI MABL DRS LA	LERS A E DIGI B	IGNAL	M. Tech. ES	& VLSI	I Sem		
Course	Code	Category	Ho	urs/We	ek	Credits	Maxin	um Mar	ks	
2284	113	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			I		4	2	50	50	100	
							End Exam	Duration	: 3Hrs	
Course	 Course Objectives: To understand, compare and select ARM processor core based SoC with several features/peripherals based on requirements of embedded applications. To be able to identify and characterize architecture of Programmable DSP Processors To develop small applications by utilizing the ARM processor core and DSP processor based platform. 									
Course	Outcon	nes: On success	sful com	pletion of	of this	course, the	students will b	e able to		
CO 1	Install. proces	Ill, configure and utilize tool sets for developing applications based on ARM essor Core SoC and DSP processor.								
CO 2	Develo theCor	op prototype co rtex M3 and DS	des usin P devel	g comm opment	only a boards	vailable on	and off chip pe	eripherals	on	

LIST OF ASSIGNMENTS:

Part A) Experiments to be carried out on Cortex-M3 development boards and using GNU Tool chain

- 1. Blink an LED with software delay, delay generated using the Sys Tick timer.
- 2. System clock real time alteration using the PLL modules.
- 3. Control intensity of an LED using PWM implemented in software and hardware.
- 4. Control an LED using switch by polling method, by interrupt method and flash the LED once every five switch presses.
- 5. UART Echo Test.
- 6. Take analog readings on rotation of rotary potentiometer connected to an ADC channel.
- 7. Temperature indication on an RGB LED.
- 8. Mimic light intensity sensed by the light sensor by varying the blinking rate of an LED.
- 9. Evaluate the various sleep modes by putting core in sleep and deep sleep modes.
- 10. System reset using watchdog timer in case something goes wrong.
- 11. Sample sound using a microphone and display sound levels on LEDs.

Part B) Experiments to be carried out on DSP C6748 evaluation kits and using Code Composer Studio (CCS)

- 1. To develop an assembly code and C code to compute Euclidian distance between any two points
- 2. To develop assembly code and study the impact of parallel, serial and mixed execution
- 3. To develop assembly and C code for implementation of convolution operation
- 4. To design and implement filters in C to enhance the features of given input sequence/signal

Course	e Title	ANALO CMOS	G AND VLSI I	DIGIT. DESIGN	AL N		M. Tech. ES	& VLSI I	I Sem
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Mark	KS
2284	201	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3			3	40	60	100
Mid Ex	am Dur	ation: 2Hrs					End Exam D	uration:	3Hrs
	Objecti	ves: h fundamental	s of ('MOS	Digital	integrated	circuit design	n such	96
	norter	an of Combin	s of C		logio		d Sequential N	MOS log	as
	circuits.		lational	MOS	logic	circuits, and	u sequentiai r	NOS 10g	,ic
	Fo teacl	h the fundame	ntals of	^F Dynar	nic lo	ric circuits	and basic sen	niconduct	or
r	nemorie	s which are the	hasics	for the <i>i</i>	design	of high per	formance digita	l integrate	he
	rircuits	is which are the	Jusies		acsign	or mgn pen	ionnance urgita	ii iiitegiat	Ju
	Basic d	esion concents	issues	and tr	adeoff	s involved	in analog IC	design a	re
e	explored	l.	, 155005	and ti	aucon	s mvorved	in analog ic	design a	10
	Го learn	about Design	of CMC	S Op A	mps, (Compensatio	on of Op Amps	, Design	of
]	Гwo-Sta	ge Op Amps,	Power	Supply	Rejec	tion Ratio	of Two-Stage	Op Amp	DS,
(Cascade	Op Amps, Mea	asureme	nt Techi	niques	of OP Amp		1 1	
					-	-			
Course	Outcon	nes: On success	ful com	pletion	of this	course, the	students will be	able to	
CO 1	Appre	ciate the trade-o	offs invo	lved in	analog	integrated of	circuit design.		
CO 2	Under	stand and appre	ciate the	e import	ance o	f noise and	distortion in ana	alog circui	its.
CO 3	Analy	ze complex eng	ineering	problei	ns crit	ically in the	domain of anal	og IC	
	design	for conducting	researc	h.	~ .				~
CO 4	Demo	nstrate advance	d knowl	edge in	Static	and dynami	c characteristics	s of CMO	S,
	Altern	ative CMOS Lo	ogics, Es	stimation	n of De	elay and Pow	ver, Adders Des	sign.	
CO 5	Solve	engineering pro	blems f	or feasit	ole and	optimal sol	utions in the co	re area of	digital
	ICs.								

Digital CMOS Design:

UNIT I

Review: Basic MOS structure and its static behavior, Quality metrics of a digital design: Cost, Functionality, Robustness, Power, and Delay, Stick diagram and Layout, Wire delay models. Inverter: Static CMOS inverter, Switching threshold and noise margin concepts and their Evaluation, Dynamic behavior, Power consumption.

UNIT II

Physical design flow: Floor planning, Placement, Routing, CTS, Power analysis and IR drop estimation-static and dynamic, ESD protection-human body model, Machine model.

Combinational logic: Static CMOS design, Logic effort, Rationed logic, Pass transistor logic, Dynamic logic, Speed and power dissipation in dynamic logic, Cascading dynamic gates, CMOS transmission gate logic.

UNIT III

Sequential logic: Static latches and registers, Bi-stability principle, MUX based latches, Static SR

flip-flops, Master-slave edge-triggered register, Dynamic latches and registers, Concept of pipelining, Pulse registers, Non-bistable sequential circuit. Advanced technologies: Giga-scale dilemma, Short channel effects, High–k, Metal Gate Technology, FinFET, TFET etc.

Analog CMOS Design

UNIT IV

Single Stage Amplifier: CS stage with resistance load, Divide connected load, Current source load, Triode load, CS stage with source degeneration, Source follower, Common gatestage, Cascade stage, Choice of device models. Differential Amplifiers: Basic difference pair, Common mode response, Differential pair with MOS loads, Gilbert cell.

UNIT V

Passive and active current mirrors: Basic current mirrors, Cascade mirrors, Active current mirrors. Frequency response of CS stage: Source follower, Common gate stage, Cascade stage and difference pair, Noise. Operational amplifiers: One stage OPAMP, Two stage OPAMP, Gain boosting, Common mode feedback, Slew rate, PSRR, Compensation of 2 stage OPAMP.

TEXT BOOKS:

- 1. J P Rabaey, A P Chandrakasan, B Nikolic, "Digital Integrated circuits: A design perspective", Prentice Hall electronics and VLSI series, 2nd Edition.
- 2. Baker, Li, Boyce, "CMOS Circuit Design, Layout, and Simulation", Wiley, 2nd Edition.
- 3. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", TMH, 2007.

- Phillip E. Allen and Douglas R. Holberg, "CMOS Analog Circuit Design", Oxford, 3rd Edition.
- 2. R J Baker, "CMOS circuit Design, Layout and Simulation", IEEE Inc., 2008.
- 3. Kang, S. and Leblebici, Y., "CMOS Digital Integrated Circuits, Analysis and Design", TMH, 3rd Edition.
- 4. Pucknell, D.A. and Eshraghian, K., "Basic VLSI Design", PHI, 3rd Edition.

Course	Title	EMBE OP	DDED A ERATI	AND RI NG SYS	ME	M. Tech. ES	& VLSI	II Sem	
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	um Mar	ks
2284202PCCLTPCContinuous3340						Continuous Internal Assessment	End Exams	Total	
			3	-		3	40	60	100
Mid Exa	ım Dur	ation: 2Hrs					End Exam	Duration	n: 3Hrs
> T Course C > T Co > T th	The main onstrain The court of the court of the court of the court of the section	n objective of t nts that arise wh rse will also int students are exp	he cours nen desig roduce t pected to	se is to g gning an heoretic master	get stude d develo al and p and be a	ents famili oping emb oractical so able to app	ar with the typ edded systems lutions to these ly to realistic c	ical probl e typical p case studie	ems and problems es.
Course (Outcon	nes: On success	sful com	pletion of	of this c	ourse, the	students will b	e able to	
CO 1	Unders Proces	stand the functions sors and Embe	lamental dded RT	conce OS Con	pts of cepts.	a embed	ded system,	General	Purpose
CO 2	Apply	embedded syst	em conc	epts in i	ndustry	, medicine	, and defence.		
CO 3	Analyz	ze the embedde	d design	models	and De	sign Techi	nology.		
CO 4	Design	n custom single	purpose	process	sors.				

Introduction: Embedded systems overview, Design challenge, Processor technology, IC technology, Design technology. RT-Level combinational logic, Sequential logic (RT-Level), Custom single purpose processor design (RT-Level), optimizing custom single purpose processors.

UNIT II

General Purpose Processors: Basic architecture, Operation, Programmer's View, Development environment, Application specific Instruction Set processors (ASIPs).

UNIT III

State Machine and Concurrent Process models: Introduction, Models Vs Languages, Finite State Machine with Data path model (FSMD), Using State Machines, Program State Machine (PSM),Concurrent Process Model, Concurrent Processes, Communication among processors, Synchronization among processes, Implementation, Data flow model, Real-time Systems.

UNIT IV

Design Technology: Introduction, Automation-The parallel evolution of complication and synthesis, Logic, RT, Behavioral synthesis, System synthesis and hardware/software codesign, Verification of hardware/software co-simulation, Reuse of intellectual property cores.

UNIT V

Embedded RTOS Concepts: Architecture of the Kernel, Tasks and Task Scheduler, interrupt service routines, Semaphores, Mutex, Mail boxes, Message Queues, Event Registers, Pipes, Signals.

TEXT BOOKS:

- 1. Frank Vahid, Tony D. Givargis, "Embedded Systems Design A Unified Hardware/Software Introduction", John Wiley & Sons. Inc.2002.
- 2. Dr. K.V.K.K. Prasad, "Embedded / Real-Time Systems: Concepts, Design and Programming", Dreamtech Publications.

- 1. Raj Kamal, "Introduction to Embedded Systems", TMH, 2002.
- 2. David E. Simon, "An Embedded Software Primer", 1st Edition, Addison Wesley Professional, 2007.

Course	Title	MEM	ORY AI	RCHITI	ECTU	RES	M. Tech. ES	& VLSI	II Sem
Course	Code	Category	Но	urs/We	ek	Credits	Maxim	num Mar	ks
22842	203	PEC	L	L T		С	Continuous Internal Assessment	End Exams	Total
			3			3	40	60	100
Mid Exa	am Dur	ation: 2Hrs					End Exam l	Duration	: 3Hrs
Course	Objectives:								
	► 1	o understand the	he archit	ecturear	nddesig	nsemicon	nductor		
	n	nemorycircuits	andsubs	ystems					
Course	Outcon	nes: On success	sful com	pletion of	of this	course, the	e students will be	e able to	
CO 1	Select	architecture an	d design	semico	nducto	r memory	v circuits and sub	systems.	
CO 2	Identif semico	y various for the second secon	ault m ries and	odels, their tes	modes sting pr	and r	mechanisms in		
CO 3	Analy	ze the state-of-t	the-art m	nemory c	chip de	sign			

RandomAccessMemoryTechnologies:

Static Random Access Memories (SRAMs), SRAM Cell Structures, MOSSRAM Architecture, MOSSRAM Cell and Peripheral Circuit, Bipolar SRAM, Advanced SRAM Architectures, Application Specific SRAMs.

UNIT II

DRAMs, MOS DRAM Cell, Bi CMOS DRAM, Error Failures in DRAM, Advanced DRAM Design and Architecture, Application Specific DRAMs. SRAM and DRAM Memory Controllers

UNIT III

Non-Volatile Memories: Masked ROMs, PROMs, Bipolar & CMOS PROM, EEPROMs, Floating Gate EPROM Cell, OTP EPROM, EEPROMs, Non-volatile SRAM, Flash Memories.

UNIT IV

Semiconductor Memory Reliability and Radiation Effects: General Reliability Issues, RAM Failure Modes and Mechanism, Nonvolatile Memory, Radiation Effects, SEP, Radiation Hardening Techniques. Process and Design Issues, Radiation Hardened Memory Characteristics, Radiation Hardness Assurance and Testing

UNIT V

Advanced Memory Technologies and High-density Memory Packing Technologies: Ferroelectric Random Access Memories (FRAMs), Gallium Arsenide (GaAs) FRAMs, Analog Memories, Magneto Resistive Random Access Memories (MRAMs), Experimental Memory Devices. Memory Hybrids (2D&3D), Memory Stacks, Memory Testing and Reliability Issues.

TEXTBOOKS:

- 1. Ashok K Sharma, "Advanced Semiconductor Memories: Architectures, Designs and Applications", Wiley Interscience
- 2. Kiyoo Itoh, "VLSI Memory Chip Design", Springer International Edition

- 1. Ashok K Sharma, "SemiconductorMemories:Technology, Testing and Reliability", PHI
- 2. Luecke Mize Care, "Semiconductor Memory design & application"
- 3. Belty Prince, "Semiconductor Memory", Design Handbook.

Course	Title	ADV	ANCE ARCHI	D COM TECTU	IPUTE JRE	CR	M. Tech. ES	& VLSI	II Sem
Course	Code	Category	Ho	urs/Wee	ek	Credits	Maxin	num Mar	ks
22842	204	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3			3	40	60	100
Mid Exa	ım Dur	ation: 2Hrs					End Exam	Duration	: 3Hrs
	> 7 s	To Understand t ystems, paralle	he adva lism and	nced cor l pipelin	ing cor	related to concepts, the c	omputer archite lesign aspects a	ecture and and challe	storage nges
Course	Outcon	nes: On success	sful com	pletion of	of this	course, the	students will be	e able to	
CO 1	Under	stand the advan	ced con	cepts rel	ated to	computer a	architecture and	d storage	systems.
CO 2	Under	stand parallelis	m and p	ipelining	g conce	epts, the des	ign aspects and	l challeng	es.
CO 3	Analy	ze the high perf	ormance	e scalabl	e Mult	ithreaded a	nd multiproces	sor systen	ns.

Fundamentals of Computer Design: Technology trends, cost- measuring and reporting performancequantitative principles of computer design.

Instruction Set Principles and Examples: classifying instruction set- memory addressing- type and sizeof operands- addressing modes for signal processing operations in the instruction set, instructions for control flow, encoding an instruction set, the role of compiler

UNIT II

Instruction Level Parallelism (ILP): overcoming data hazards reducing branch costs, high performanceinstruction delivery, hardware based speculation, limitation of ILP

ILP Software Approach:compiler techniques- static branch protection, VLIW approach, H.W support formore ILP at compile time- H.W verses S.W solutions

UNIT III

Memory Hierarchy Design:cache performance, reducing cache misses penalty and miss rate, virtualmemory, protection and examples of VM.

UNIT IV

Multiprocessors and Thread Level Parallelism:Symmetric shared memory architectures, distributedshared memory, Synchronization, multi threading.

UNIT V

Storage Systems-Types, Buses, RAID, errors and failures, bench marking a storage device, designing a I/Osystem.

Interconnection Networks and Clusters:Interconnection network media, practical issues ininterconnecting networks- examples, clusters, designing a Cluster

TEXT BOOKS:

- 1. John L. Hennessy & David A. Patterson, "Computer Architecture A quantitative approach", 3rd edition, Morgan Kuf mann (An Imprint of Elsevier)
- 2. Dezso Sima, Terence Fountain, Peter Kacsuk, "Advanced Computer Architectures", Pearson.

- 1. Kai Hwang and A. Briggs "Computer Architecture and parallel Processing", International Edition Mc Graw Hill.
- 2. Kai Hwang, "Advanced Computer Architecture", McGraw Hill Education, 1993.

Course	Title		SOC	DESIG	N		M. Tech. ES	& VLSI	II Sem		
Course	Code	Category	Ho	urs/We	ek	Credits	Maxin	num Mar	ks		
22842	205	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3			3	40	60	100		
Mid Exa	am Dur	ation: 2Hrs					End Exam	Duration	: 3Hrs		
Course	Objecti	ves:									
	> The Objective of this course is to provide the students with knowledge about the										
	system architecture and components.										
	≻ Тон	understand the S	SoC pro	cess and	its me	mory desig	n				
Course	Outcon	nes: On success	ful com	pletion of	of this	course, the	students will b	e able to			
CO 1	Identif	fy and formulat	e a give	n proble	em in t	the frame w	vork of SoC ba	sed desig	n		
	approa	ches for engine	ering ap	plicatio	ns			-			
CO 2	Realiz	e impact of SoC	C on elec	etronic d	lesign	philosophy	and Macro-ele	ctronics th	nere by		
	incline	e towards entrep	reneurs	hip & sk	till dev	elopment					
CO 3	Comp	utedifferent sim	ulation	models							
CO 4	Analyz	ze the power op	timizati	on for d	igital s	ystems					
CO 5	Under	stand the impor	tance of	synthes	is						

ASIC:Overview of ASIC types, design strategies, CISC, RISC and NIS C approaches for SOC architectural issues and its impact on SoC design methodologies, Application Specific Instruction Processor (ASIP) concepts.

UNIT II

NISC: NISC Control Words methodology, NISC Applications and Advantages, ArchitectureDescription Languages (ADL) for design and verification of Application Specific Instruction setProcessors (ASIP), No-Instruction-Set-computer (NISC)- design flow, modeling NISCarchitectures and systems, use of Generic Netlist Representation - A formal language forspecification, compilation and synthesis of embedded processors.

UNIT III

Simulation: Different simulation modes, behavioral, functional, static timing, gate level, switch level,transistor/circuit simulation, design of verification vectors, Low power FPGA, Reconfigurable

systems, SoCrelated modeling of datapath design and controllogic, Minimization of interconnect simpact, clock tree design issues.

UNITIV

Low power SoC design/Digital system: Design synergy, Low power system perspective-power gating, clock gating, and adaptive voltage scaling (AVS), Static voltage scaling, Dynamic clock frequency and voltage scaling (DCFS), building block optimization, building block memory, power down techniques, powerconsumptionverification.

UNIT V

Synthesis Role and Concept of graph theory and its relevance to synthesizable constructs, Walks, trails paths, connectivity, components, mapping/visualization, nodal and admittance graph. Technology independent and technology dependent approaches for synthesis, optimization constraints, Synthesis report analysis Single core and Multi core systems, dark silicon issues, HDL coding techniques for minimization of power consumption, Fault tolerant designs

TEXT BOOKS:

- 1. Hubert Kaeslin, "Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication", Cambridge University Press, 2008.
- 2. B. Al Hashimi, "System on chip-Next generation electronics", The IET, 2006

- Rochit Rajsuman, "System-on-a-chip:Design and test", Advantest America R&D Center, 2000
- 2. P Mishra and N Dutt, "Processor Description Languages", Morgan Kaufmann, 2008
- Michael J. Flynn and Wayne L uk, "Computer System Design: System on Chip". Wiley

Course	Title	LOW	POWE	R VLSI	DESI	GN	M. Tech. ES	& VLSI	IISem
Course	Code	Category	Но	urs/We	ek	Credits	Maxin	num Mar	ks
22842	206	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3			3	40	60	100
Mid Exa	m Dur	ration: 2Hrs					End Exam	Duration	: 3Hrs
Course (Objecti	ives:	•					0	
	Stue	dy different abs	traction	levels 1	n VLS	I Design an	d the impact o	t power r	eduction
	met	hods at higher l	evels						
	App	ply leakage cont	rol mec	hanisms	to red	uce static po	ower consumpt	tion in DS	M VLSI
	regi > App	me oly technology	indeper	ident an	d tech	nology-dep	endent technic	ques for l	Dynamic
	pow	ver reduction in	CMOS	circuits					
	Stu	dy and apply va	arious se	oftware	power	estimation	and optimizat	ion techni	ques for
	low	power VLSI sy	vstem de	sign	-		-		-
>	 App con 	oly low powe sumption in SR	er circu AM des	it and igns	archi	tectural te	chniques for	reducing	power
Course (Outcon	nes: On success	ful com	pletion of	of this	course, the	students will b	e able to	
CO 1	Distin	guish the impa	ct of var	ious pov	ver red	luction tech	niques at differ	rent levels	of
	VLSI	Design							
CO 2	Identi	fv the sources of	of power	dissipa	tion an	d apply leal	cage control te	chniques (0
	reduce	e static power co	onsumpt	tion in C	MOS o	circuits		1	
				. 1.	1 1				
CO 3	Apply	technology inc	lependei	nt and te	chnolo	gy-depende	ent techniques	tor Dynan	nic
~~ (power	reduction in Cl	MOS cir	cuits					_
CO 4	Analy	ze different pov	ver redu	ction tec	chniqu	es for VLSI	systems at De	sign time,	Run-
	time a	nd Stand-by mo	odes						
CO 5	Emple	oy software pov	ver estin	nation a	nd opti	mization m	ethods for low	power VI	LSI
	system	n design							

Introduction to Low Power design: SOC levels, Emerging zero-power applications (WSN), Design-productivity challenge, Impact of implementation choices, Motivation for LPD, Basic VLSI Design Flow, Optimization examples at various levels (System, Sub-system, RTL, Gate, Circuit and Device levels). Sources of power dissipation, MOS transistor leakage components, Static Power dissipation, Active Power dissipation, Circuit Techniques for Low Power Design

UNIT II

Power Optimization Techniques – I: Dynamic Power Reduction Approaches, Circuit Parallelization, Voltage Scaling Based Circuit Techniques, Circuit Technology – Independent Power Reduction, Circuit Technology Dependent Power Reduction; Leakage Power Reduction – Leakage Components, Design Time Reduction Techniques, Run-time Stand-by Reduction Techniques, Run-time Active Reduction Techniques Reduction in Cache Memories.

UNIT III

Power Optimization Techniques – II: Low Power Very Fast Dynamic Logic Circuits, Low Power Arithmetic Operators, Energy Recovery Circuit Design, Adiabatic – Charging Principle and its implementation issues.

Software Design for Low Power: Sources of Software Power Dissipation, Software Power Estimation, Software Power Optimizations, Automated Low-Power Code Generation, Co-design for Low Power.

UNIT IV

Low Voltage Low Power Static Random Access memories: Basics, Race between 6T and 4T memory cells, LVLP SRAM Cell designs- Shared bit-line SRAM cell configuration, Power efficient 7T SRAM cell with current mode read and write, The 1T SRAM cell, Pre-charge and Equalization Circuit, Dynamic and static decoders, Voltage Sense amplifier, Output Latch,

Low Power SRAM Techniques: Sources of SRAM Power, Low Power Circuit techniques such as capacitance reduction, Leakage current reduction.

UNIT V

Large LP VLSI System design and Applications: Architecture-driven Voltage Scaling, Power optimization using operation reduction and operation substitution, Pre-computation based optimization, Multiple and Dynamic supply voltage design, Choice of supply voltages, varying the clock speed, varying the VDD of RAM structures, Gated Clocking. Leakage current reduction in medical devices (Ref-1)

TEXT BOOKS:

- 1. Kiat Seng Yeo and Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems, Tata Mc Graw hill Edition, 2005. (Units I, IV and V)
- 2. Christian Piguet, "Low Power CMOS Circuits Technology, Logic Design and CAD Tools", 1st Indian Reprint, CRC Press, 2010.(Units II and III)
- 3. Kaushik Roy and Sharat Prasad, " Low-Power CMOS VLSI Circuit Design", Wiley Pub., 2000 (Unit III)

- 1. DimitriosSoudris, Christian Piguet and CoastasGoutis, "Designing CMOS Circuits for Low Power", Kluwer Academic Pub, 2002
- 2. J. Rabaey, Low Power Design Essentials, 1st Edition, Springer Publications, 2010

Course	Title	COMMUNIO AND INTER	CATIOI FACES	N BUSE	S		M. Tech. ES	& VLSI	II Sem	
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Mark	KS	
225842	4207PECLTPCContinuous Internal AssessmentEnd ExamsTo33406010									
			3			3	40	60	100	
Mid Exa	Mid Exam Duration: 2Hrs End Exam Duration: 3Hrs									
Course (Objecti ≻T ≻T	ives: o DevelopAPIs o learn how to s	forconfi	guration	n,readin rserialb	ngandwritin ussuitablefo	gdataontoseriall praparticularapp	ous. lication		
Course (Outcon	nes: On success	sful com	pletion	of this	course, the	students will be	able to		
CO 1	01 Selectaparticularserialbussuitableforaparticularapplication.									
CO 2	Devel	opAPIsforconfi	guratior	n,reading	gandwi	itingdataon	toserialbus.			
CO 3	Design	nanddevelopper	ripherals	s thatcan	beinte	rfaced todes	iredserialbus.			

Serial Busses- Cables, Serial busses, serial versus parallel, Data and Control Signal- data frame, data rate,featuresLimitations and applications of RS232, RS485, I²C, SPN

UNIT II

Architecture-ISO 11898-2, ISO 11898-3, Data Transmission- ID allocation, Bit timing, Layers-Application layers, Objectlayer, Transfer layer, Physical layer, Frame formats- Data frame, Remote frame, Error frame, Over load frame, Ackslot, Inter frame spacing, Bit spacing, Applications.

UNIT III

Revision, Configuration space- configuration mechanism, Standardized registers, Bus enumeration, Hardware and Software implementation, Hardware protocols, Applications.

UNIT IV

Transfer Types- Control transfers, Bulk transfer, Interrupt transfer, isochronous transfer. Enumeration-Device detection, Default state, addressed state, Configured state, enumeration sequencing. Descriptortypesandcontents-Devicedescriptor, configurationdescriptor, Interfacedescriptor,Endpointdescriptor,Stringdescriptor.Devicedriver.

UNIT V

DatastreamingSerialCommunicationProtocol-

SerialFrontPanelDataPort(SFPDP)configurations,Flowcontrol, serial FPDPtransmission frames, fiberframes and copper cable.

TEXT BOOKS

- 1. Wilfried Voss, "A Comprehensive Guide to controller Area Network", Copper hill Media Corporation, 2nd Ed., 2005.
- 2 Jan Axelson, "Serial Port Complete-COM Ports, USB Virtual Com Ports and Ports for Embedded systems-, Lakeview Research, 2ndEd.,

- 1. Jan Axelson, "USB Complete", Penram Publications.
- 2 PCI Express Technology– Mike Jackson, Ravi Budruk, Mind share Press

Course	Title	NETWORK CRYPTOGR	SECUR APHY	RITY AN	ND		M. Tech. ES	& VLSI	II Sem			
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Marl	KS			
22842	208	РЕС	L	Т	Р	С	Continuous Internal AssessmentEnd ExamsTota					
			3			3	40	60	100			
Mid Exa	Mid Exam Duration: 2HrsEnd Exam Duration: 3HrsCourse Objectives:											
Course	Course Objectives:											
	≻T	o understand th	e securi	ty & nur	nber tl	neory						
	≻T	o learn about k	Key Dist	ribution	and N	Aanagement	t, Diffie-Hellma	ın Key				
		Exchange										
Course	Outcon	nes: On success	ful com	pletion	of this	course, the	students will be	able to				
CO 1	O 1 Identifyand utilizedifferent formsof cryptographytechniques.											
CO 2	2 Incorporate authentication and security in the network applications.											
CO 3	Distin	guishamongdiff	erentty	pes of thr	reatsto	the systema	and handlethesa	ne				

Security&NumberTheory: Need, security services, Attacks, OSI Security Architecture, one time passwords, Model for Network security, Classical Encryption Techniques like substitution ciphers, Transposition ciphers, Cryptan alysis of Classical Encryption Techniques. Introduction, Fermat"s and Euler"s Theorem, The Chinese Remainder Theorem, Euclidean Algorithm, Extended Euclidean Algorithm, and Modular Arithmetic.

UNIT II

Private-Key(Symmetric)Cryptography: Block Ciphers, Stream Ciphers, RC4 Stream cipher, Data Encryption Standard (DES), Advanced Encryption Standard (AES), Triple DES, RC5, IDEA, Linear and Differential Crypt analysis.

UNIT III

Public-Key (Asymmetric) Cryptography: RSA, Key Distribution and Management, Diffie-Hellman Key Exchange, Elliptic Curve Cryptography, Message Authentication Code, hash functions, message digest algorithms: MD4 MD5, Secure Hash algorithm, RIPEMD -160, HMAC.

UNIT IV

Authentication: IP and Web Security Digital Signatures, Digital Signature Standards,

Authentication Protocols, Kerberos, IP security Architecture, Encapsulating Security Payload, Key

Management, WebSecurity Considerations, Secure Socket Layer and Transport Layer Security,

Secure ElectronicTransaction.

UNIT V

System Security: Intruders, Intrusion Detection, Password Management, Worms, viruses, Trojans, Virus Counter measures, Firewalls, Firewall Design Principles, Trusted Systems.

TEXTBOOKS:

- William Stallings, "Cryptography and Network Security, Principles and Practices", Pearson Education, 3rd Edition.
- 2. Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security, Private Communicationina Public World", PrenticeHall, 2ndEdition

- Christopher M. King, Ertem Osmanoglu, Curtis Dalton, "Security Architecture, Design Deployment and Operations", RSA Press,
- 2. Stephen Northcutt, Leny Zeltser, Scott Winters, Karen Kent, and Ronald W. Ritchey, "InsideNetworkPerimeter Security", Pearson Education,2ndEdition
- Richard Bejtlich, "The Practice of Network Security Monitoring: Understanding Incident Detection and Response", William Pollock Publisher, 2013

Course	Title	PHYSICAL	DESIG	N AUT(OMAT	ION	M. Tech. ES	& VLSI	II Sem		
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Mark	KS		
2284	209	РЕС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3			3	40	60	100		
Mid Ex	am Dui	ation: 2Hrs					End Exam D	ouration:	3Hrs		
Course	Objecti	jectives:									
	To Understand the relationship between design automation algorithms and										
	➢ To Understand the relationship between design automation algorithms and Various constraints posed by VLSI fabrication and design technology										
	>]	To Identify layo	ut optin	nization	technic	ques and ma	p the algorithm	s			
Course	Outcon	nes: On success	sful com	pletion	of this	course, the	students will be	able to			
CO 1	Under	stand the relation	onship b	etween	design	automation	algorithms and	Various			
	constr	aints posed by '	VLSI fal	brication	n and d	esign techn	ology.				
CO 2	Adapt	the design algo	rithms t	o meet t	he crit	ical design	parameters.				
CO 3	Identi	fy layout optimi	zation t	echniqu	es and	map the alg	gorithms				
CO 4	Devel	opproto-typeEI	OAtoola	ndtest its	seffica	су					

VLSI design Cycle, Physical Design Cycle, Design Rules, Layout of Basic Devices, and AdditionalFabrication, Design styles: full custom, standard cell, gate arrays, field programmable gate arrays, sea of gates and comparison, system packaging styles, multi-chip modules. Design rules, layout of basic devices, fabrication process and its impact on physical design, interconnect delay, noise and cross talk, yield and fabrication cost.

UNITII

Factors, Complexity Issues and NP-hard Problems, Basic Algorithms (Graph and Computational Geometry): graph search algorithms, spanning tree algorithms, shortest path algorithms, matching algorithms, min-cut and max-cut algorithms, Steiner tree algorithms

UNITIII

Basic Data Structures, atomic operations for layout editors, linked list of blocks, bin based methods, neighbor pointers, corner stitching, multi-layer operations.

UNITIV

Graph algorithms for physical design: classes of graphs, graphs related to a set of lines, graphs related to set of rectangles, graph problems in physical design, maximum clique and minimum colouring, maximum k-independent set algorithm, algorithms forcirclegraphs.

UNIT V

Partitioning algorithms: design style specific partitioning problems, group migrated algorithms, simulated annealing and evolution, and Floor planning and pin assignment, Routing and placement algorithms

TEXTBOOKS:

- Naveed Shervani, "Algorithms for VLSI Physical Design Automation", 3rd Edition, Kluwer Academic, 1999.
- Charles J Alpert, Dinesh P Mehta, Sachin S Sapat nekar, "Handbook of Algorithms for Physical Design Automation", CRC Press, 2008.

- Sarrafzadeh, M. and Wong, C.K, "An Introduction to VLSI Physical Design", 4th Edition, McGraw-Hill
- 2. Wolf. W, "Modern VLSI Design System on Silicon", 2nd Ed., Pearson Education.
- 3. Dreschler, "Evolutionary Algorithms for VLSI CAD", 3rd Edition, Springer.

Course	Title	NA	NO EL	ECTR	ONICS	5	M. Tech. ES	& VLSI	II Sem
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Marl	KS
22842	210	PEC	L	Т	PCContinuous Internal AssessmentEnd Exams34060			Total	
			3			3	40	60	100
Mid Exa	am Dur	ation: 2Hrs					End Exam D	Ouration:	3Hrs
Course Course CO 1	Objecti Outcon To kno	 ves: To study To Under To Under To Under To Success ow nanoelectro 	the bas rstand th rstand th ful com pnics he	ics of el le band a le nanoc pletion olds the	ectron structu apacite of this e capa	ics, transistories models ors, coulomb <u>course, the</u> acity for models	ors. o blockade students will be ass production	able to of high	-quality
CO 2	Desigr	the scaling of	transisto	ors	<u>,</u>	<u>r</u>			
CO 3	Analyz	ze the molecula	r electro	onics or	revolu	tionary engi	neering solutior	ns	
CO 4	Analyz	ze the Electron	transpoi	rt in sem	nicondu	actors and n	anostructures		
CO 5	Desigr	Single modula	tion-do	ped hete	erojunc	tions			

Free Electron Theory & The New Ohm's Law: Why Electrons flow, Classical free electron theory, Somerfield's theory, The quantum of conductance, Coulomb blockade, Towards Ohm's law. The Elastic Resistor: Conductance of an Elastic Resistor, Elastic Resistor- Heat dissipation.

UNIT II

Materials for nanoelectronics: Semiconductors, Crystal lattices: bonding in crystals, Electron energy bands, Semiconductor hetero structures, Lattice - matched and pseudo morphic hetero structures, Inorganic nanowires, Organic semiconductors, Carbon nano materials: nanotubes and fullerenes.

UNIT III

Ballistic and Diffusive Transport: Ballistic and Diffusive Transfer Times, Channels for Conduction Conductivity, Conductivity: E(p) or E(k) Relations, Counting States, Drude Formula, Quantized Conductance, Electron Density –Conductivity.

UNIT IV

Electron transport in semiconductors and nanostructures: Time and length scales of the electrons in solids, Statistics of the electrons in solids and nanostructures, Fermi statistics for electrons, the density of states of electrons in nanostructures, Electron transport in nanostructures.

UNIT V

Electrons in traditional low-dimensional structures: Electrons in quantum wells: Single modulation-doped heterojunctions, Numerical analysis of a single heterojunction, Control of charge transfer, Electrons in quantum wires, Electron transport in quantum wires, Electrons in quantum dots.

TEXT BOOKS:

- 1. Introduction to Nano Science and Technology by S.M. Lindsay.
- 2. Supriyo Dutta, "Lessons from Nano science: A Lecture Note Series", World Scientific (2012).

- 1. Supriyo Dutta "Quantum Transport- Atom to Transistor", Cambridge University Press (2005).
- 2. Vladimir.V. Mitin, "Introduction to Nano electronics: Science, Nanotechnology, Engineering & Applications"

Course	Title	ANALOO DESIGN	G AND I LAB	DIGITA	AL CN	IOS VLSI	M. Tech. ES & VLSI II Sem			
Course	Code	Category	Но	urs/We	ek	Credits	Maxim	um Mark	KS .	
22842	211	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
					4	2	50	50	100	
							End Exam D	uration:	3Hrs	
	 Course Objectives: ➤ To learn Physical Design i.e. Stick diagrams, Lambda Design Rules and Layout making of VLSI circuits. ➤ To provide students with an opportunity to practice on various softwares & tools for VLSI Design and develop the mos transistors. 									
Course	Jutcon	nes: On success	stul com	pletion	of this	course, the	students will be	able to		
CO 1	Write HDL code for basic as well as advanced digital integrated circuits.									
CO 2	Import the logic modules into FPGA Boards.									
CO 3	Synthesize Place and Route the digital ICs.									
CO 4	Design	n, Simulate and	Extract	the layo	outs of	Analog IC I	Blocks using EI	DA tools.		

LIST OF MAJOR EQUIPMENTS & SOFTWARE

- 1. FPGA Kits with
- 2. XILINX Simulator
- 3. Microwind
- 4. LT Spice

LIST OF EXPERIMENTS:

- 1. MOS Device Characterization and parametric analysis
- 2. Common Source Amplifier
- 3. Common Source Amplifier with source degeneration
- 4. Cascode amplifier
- 5. simple current mirror
- 6. cascode current mirror.
- 7. Wilson current mirror.
- 8. Full Adder
- 9. RS-Latch
- 10. Clock Divider
- 11. JK-Flip Flop
- 12. Synchronous Counter
- 13. Asynchronous Counter
- 14. Static RAM Cell

Course	Title	REAL TIME	OPER	ATING	SYST	'EM LAB	M. Tech. ES & VLSI II Sem				
Course	Code	Category	Но	urs/We	ek	Credits	Maxim	um Mark	S		
2284	212	РСС	L	Т	Р	CContinuous Internal AssessmentEnd Exams					
					4	2	50	50	100		
							End Exam D	ouration:	3Hrs		
Course	Objecti	ives:									
	> Able to develop the algorithms, flow diagrams, source code and perform the										
	com	pilation, execu	tion and	i impler	nent th	e same usii	ng necessary ha	rdware ki	ts		
	for	verification. Th	ne progr	ams dev	velope	d for the im	plementation s	hould be	at		
	tha	loval of an amb	addad w	unio de	neign		promonation s		ut		
	uie		euueu s	ystem ut	sign						
Course	Outcon	nes: On success	sful com	pletion	of this	course, the	students will be	able to			
CO 1	Under	stand an applic	ation tha	t creates	s two t	asks that wa	it on a timer wh	nilst the m	ain task		
	loops	_									
CO 2	Analy	halyze how to write an application to Test message queues and memory blocks									
CO 3	Design FPGA	n & Develop an	image J	processi	ng app	lication with	1 Linux OS on 2	Xilinx Zyr	nq		

List of Experiments (As per curriculum):

- 1. Create an application that creates two tasks that wait on a timer whilst the main task loops.
- 2. Write an application that creates a task which is scheduled when a button is pressed, which illustrates the use of an event set between an ISR and a task
- 3. Write an application that Demonstrates the interruptible ISRs(Requires timer to have higher priority than external interrupt button)
- 4. a).Write an application to Test message queues and memory blocks.b).Write an application to Test byte queues
- 5. Write an application that creates two tasks of the same priority and sets the time slice period to illustrate time slicing.
- 6. Interfacing Programs: Write an application that creates a two task to Blinking two different LEDs at different timings
- 7. Write an application that creates a two task to Blinking two different LEDs at different timings
- 8. Write an application that creates a two task displaying two different messages in LCD display in two lines.
- 9. Sending messages to mailbox by one task and reading the message from mailbox by another task.
- 10. Sending message to PC through serial port by three different tasks on priority Basis.
- 11. Porting Linux and developing simple application on Xilinx Zed board
- 12. Developing image processing application with Linux OS on Xilinx Zynq FPGA

List of Experiments (Beyond the Syllabus):

- 1. Simulating a stepper-motor driver
- 2. Write simple applications using RTX (ARM Keil"s real time operating system, RTOS)

Course	Title	IOT AND IT	'S APP	LICATI	IONS		M. Tech. ES &	& VLSI I	II Sem
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Mark	KS
22843	301	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3			3	40	60	100
Mid Exa	am Dur	ation: 2Hrs					End Exam D	uration:	3Hrs
Course	 Course Objectives: > To understand the fundamentals of IOTTechnologies. > To learn different IOT protocols & IT access technologies 								
Course	Outcon	nes: On succes	sful com	pletion	of this	course, the	students will be	able to	
CO 1	Apply	theKnowledgei	nIOTTe	chnolog	gies and	IDatamanag	gement.		
CO 2	Deterr	ninethevaluesc	hains Pe	rspectiv	eofM2	M toIOT.			
CO 3	Implei	mentthestateoft	heArchi	tectureo	f anIO	Г.			
CO 4	Compa	areIOTApplica	tionsin I	ndustria	l &rea	lworld.			
CO 5	Demo	nstrateknowled	ge andu	nderstan	dingth	esecurityan	dethicalissues of	fanIOT.	

FUNDAMENTALS OF IoT- Evolution of Internet of Things, Enabling Technologies, IoTArchitectures,oneM2M,IoTWorldForum(IoTWF)andAlternativeIoTmodels,SimplifiedIoTArch itecture and Core IoT Functional Stack, Fog, Edge and Cloud in IoT, Functional blocks of an IoTecosystem,Sensors, Actuators, Smart ObjectsandConnectingSmart Objects.

IoT Platform overview: Overview of IoT supported Hardware platforms such as: Raspberry pi, ARMCortex Processors, Arduino andIntel Galileo boards.

UNIT II

IoT PROTOCOLS- IT Access Technologies: Physical and MAC layers, topology and Securityof IEEE 802.15.4, 802.15.4g, 802.15.4e, 1901.2a, 802.11ah and Lora WAN, Network Layer: IP versions, Constrained Nodes and Constrained Networks, Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routingover Low Power and Lossy Networks, Application Transport Methods: Supervisory Control and Data Acquisition, Application Layer Protocols: Co AP and MQTT

UNITIII

DESIGNANDDEVELOPMENT-Design Methodology, Embedded computing logic, Microcontroller, Systemon Chips, IoT system building blocks, Arduino, Board details, IDE programming, Raspberry Pi, Interfaces and Raspberry Pi with Python Programming

UNIT IV

DATA ANALYTICS AND SUPPORTING SERVICES- Structured Vs Unstructured Data and Datain Motion Vs Datain Rest, Role of Machine Learning – No SQL Databases, Hadoop Ecosystem, Apache Kafka, Apache Spark, Edge Streaming Analytics and Network Analytics, XivelyCloud for IoT, Python Web Application Framework, Django, AWS for IoT, System Management withNETCONF-YANG

UNIT V

CASE STUDIES / INDUSTRIAL APPLICATIONS: IoT applications in home, infrastructures, buildings, security, Industries, Home appliances, other IoT electronic equipments. Use of Big Data and Visualization in IoT, Industry 4.0 concepts.

Sensors and sensor Node and interfacing using any Embedded target boards (Raspberry Pi/Intel Galileo/ARM Cortex/ Arduino)

TEXTBOOKS:

- 1. David Hanes, Gonzalo Salgueiro, Patrick Gross etete, Rob Barton and Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things", Cisco Press, 2017.
- 2. A rshdeep Bahga, Vijay Madisetti "Internet of Things A hands on approach", Universities Press, 2015

- 1. Olivier Hersent, David Boswarthick, Omar Elloumiand Wiley "The Internet of Things Key applications and Protocols", 2012 (forUnit 2).
- Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyleand, "From Machine – to – Machine to the Internet of Things –Introduction to a New Age of Intelligence", Elsevier, 2014.

Course	Title	HARDWAR	E SOFT	WARE	COD	ESIGN	M. Tech. ES a	& VLSI I	II Sem
Course	Code	Category	Но	urs/We	ek	Credits	Maxim	um Marl	KS
22843	302	РЕС	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3			3	40	60	100
Mid Exa	am Dur	ration: 2Hrs					End Exam D	uration:	3Hrs
Course Co	Dbjecti > > Outcon Explai Analy	To design and To Understand To design and ones: On success in AbouttheHar ze how to selec	analyze the imp compiler sful com dware-S t a targe	Hardwa ortance r develop pletion oftware t archite	are-Sof of syst pment of this Code c cture a	tware Code em level spe environmen course, the lesign Meth and how a pr	design Method ecification langu at students will be odology rototype is built	ology lages able to	
CO 3	Explai	in how emulation	on of a p	rototype	e is dor	ne.	velonmentenviro	nment	
0.4	DICIV	ic wabbutcomp		ciniolog	icsanu	complicities		minent.	
CO 5	Under co-sim	stand the impor nulation.	tance of	f system	level s	specificatior	languages and	multi-lan	guage

Co-Design Issues: Co-Design Models, Architectures, Languages, A Generic Co-design Methodology.

Co-Synthesis Algorithms: Hardware software synthesis algorithms, hardware – software partitioning distributed system co-synthesis

UNIT II

Prototyping and Emulation: Prototyping and emulation techniques, prototyping and emulation environments, future developments in emulation and prototyping architecture specialization techniques, system communication infrastructure.

Target Architectures: Architecture Specialization techniques, System Communication infrastructure, Target Architecture and Application System classes, Architecture for control dominated systems (8051-Architectures for High performance control), Architecture for Data dominated systems (ADSP 21060, TMS320C60), Mixed Systems.

UNIT III:

Compilation Techniques and Tools for Embedded Processor Architectures: Modern embedded architectures, embedded software development needs, compilation technologies, practical consideration in a compiler development environment.

UNIT IV

Design Specification and Verification: Design, co - design, the co-design computational model, concurrency coordinating concurrent computations, interfacing components, design verification, implementation verification, verification tools, Interface verification

UNIT V

Languages for System-Level Specification and Design-I: System-level specification, design representation for system level synthesis, system levelspecificationlanguages.Languages for System-Level Specification and Design-II Heterogeneous specifications and multi-language co-simulation, the cosyma system and lycos system

TEXT BOOKS:

- 1. Wayne Wolf, "Hardware / Software Co- Design Principles and Practice", Jorgen Staunstrup, 2009, Springer.
- 2. Giovanni De Micheli, Mariagiovanna Sami, "Hardware / Software Co- Design", 2002, Kluwer Academic Publishers.

REFERENCE BOOKS:

1. Patrick R. Schaumont, "A Practical Introduction to Hardware/Software Co-design", 2010, Springer

Course	Title	ARTIF	ICIAL]	INTEL	LIGEN	NCE	M. Tech. ES	& VLSI I	II Sem			
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Mark	KS			
22843	303	PEC L T P C Continuous End Assessment Assessment Assessment Figure 60						Total				
			3			3	40	60	100			
Mid Exa	am Dur	ation: 2Hrs					End Exam D	ouration:	3Hrs			
Course	Objecti	bjectives:										
	To Understand the concept of Artificial Intelligence											
	To Understanding reasoning and fuzzy logic for artificial intelligence											
	 To Analyze Symbolic Reasoning Under Uncertainty 											
Course	Outoon	\sim 10 mary	ful com	nlation	of this	goursa tha	students will be	abla to				
	Under	tondthaganaan	tof A mtifi	pietion			students will be					
01	Under	standtheconcep	loIArtiII	ciannie	ingenc	e						
CO 2	Explai	n the searchtec	nniquesa	andknov	vledger	representation	onissues					
<u> </u>							11.					
CO 3	Under	standingreason	ng and i	uzzylog	gic fora	irtificial inte	elligence					
CO 4	Analy	za Symbolic Par	soning	InderLu	noortai	ntv						
	Analy		isonng	Juerol	icertal	iity						
CO 5	Under	standinggamep	layingan	dnatura	llangu	ageprocessii	ng					

What is AI (Artificial Intelligence)? : The AI Problems, The Underlying Assumption, What are Techniques, The Level Of The Model, Criteria For Success, Some General References, One Final WordProblems, State Space Search & Heuristic Search Techniques: Defining The Problems As A State SpaceSearch, Production Systems, Production Characteristics, Production System Characteristics, And IssuesIn The Design Of Search Programs, Additional Problems. Generate-And-Test, Hill Climbing, Best-FirstSearch,Problem Reduction, Constraint Satisfaction,Means-Ends Analysis.

UNIT II

Knowledge Representation Issues: Representations and Mappings, Approaches To Knowledge Representation. Using Predicate Logic: Representation Simple Facts In Logic, Representing Instance And Isa Relationships, Computable Functions And Predicates, Resolution. Representing Knowledge Using Rules: Procedural versus Declarative Knowledge, Logic Programming, and Forward Versus Backward Reasoning.

UNIT III

Symbolic Reasoning Under Uncertainty: Introduction To Nomonotonic Reasoning, Logics For Non-monotonic Reasoning. Statistical Reasoning: Probability And Bays" Theorem, Certainty Factors And Rule-Base Systems, Bayesian Networks, Dempster Shafer Theory, Fuzzy Logic, Weak Slot-and-Filler Structures: Semantic Nets, Frames. Strong Slot-and-Filler Structures: Conceptual Dependency, Scripts, CYC.

UNIT IV

Game Playing: Overview, And Example Domain: Overview, Mini Max, Alpha-Beta Cut-off,

Refinements, Iterative deepening, The Blocks World, Components Of A Planning System, Goal Stack Planning, Nonlinear Planning Using Constraint Posting, Hierarchical Planning, ReactiveSystems, Other Planning Techniques. Understanding: What understands? What makes it hard? As constraint satisfaction

UNIT V

Natural Language Processing: Introduction, Syntactic Processing, Semantic Analysis, SemanticAnalysis, Discourse And Pragmatic Processing, Spell Checking Connectionist Models: Introduction: Hopfield Network, Learning In Neural Network, Application Of Neural Networks,RecurrentNetworks,Distributed Representations,Connectionist AIAnd SymbolicAI

TEXT BOOKS:

- 1. Elaine Richand Kevin Knight "Artificial Intelligence", 2nd Edition, Tata Mc Graw-Hill, 2005.
- 2. Stuart Russel and Peter Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Prentice Hall, 2009.

- 1. Denis Rothmanl, "Artificial Intelligence" By Example-2nd edition.
- 2. Vinod Chandra, "Artificial Intelligence and Machine Learning" 1st Edition.

Course	Title		RFIC	DESIG	N		M. Tech. ES	& VLSI I	II Sem		
Course	Code	Category	Ho	urs/We	ek	Credits	Maxim	um Mark	KS		
22843	304	PEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			3			3	40	60	100		
Mid Exa	am Dur	ation: 2Hrs	tion: 2Hrs End Exam Duration: 3Hrs es:								
Course Course CO 1 CO 2	Objecti Outcon Unders Identif	ves:	n variou rstand th fy noise sful com bottlen , develo	is consti le desigr and inte pletion lecks spo p noise	tuents" bottle offerend of this ecific t model	blocks of F enecks speci ce performa course, the o RF IC des s for the dev	RF receiver from fic to RF IC des nce metrics like students will be sign, linearity re vices and system	t end sign e noise fig able to lated issue	ure es, ISI		
CO 3	Specif differe	y noise and intendent intendent	erference teria.	e perform	nance	metrics like	noise figure, II	P3 and			
CO 4	Compi	rehend differen	t multip	le access	s techn	iques, wirel	ess standards				
CO 5	Desigr	n various consti	tuents"	olocks o	f RF re	eceiver front	tend				

Introduction to RF and Wireless Technology: Complexity Comparison, Design Bottle Necks, Applications, Analog And Digital Systems, Choice of Technology.

UNIT II

Basic Concepts in RF Design: Nonlinearity and time variance, ISI, Random process and noise, sensitivity and dynamic range, passive impedance transformation.

UNIT III

Multiple Access: Techniques and wireless standards, mobile RF communication, FDMA, TDMA, CDMA, Wireless standards. TRANSCEIVER ARCHITECTURES: General considerations, receiver architecture, Transmitter Architecture, transceiver performance tests, case studies.

UNIT IV

Amplifiers, Mixers and Oscillators: LNAs, down conversion mixers, Cascaded Stages, oscillators, Frequency synthesizers.

UNIT V

Power Amplifiers: General considerations, linear and nonlinear Pas, classification, High Frequency power amplifier, large signal impedance matching, linearization techniques

TEXT BOOKS:

- 1. Behzad Razavi, "RF Microelectronics", Prentice Hall of India, 2001
- 2. Thomas H. Lee, "The Design of CMOS Radio Integrated Circuits", Cambridge University Press.

- 1. Jeremy Everard, "Fundamentals of RF Circuit Design with Low Noise Oscillators",
- 2. Peter b. Kenington, "High Linearity RF Amplifier Design",

Course T	itle	BUS	SINESS	ANAL	YTICS	5	M. Tech. ES	&VLSI	II Sem			
Course C	ode	Category	Ho	urs/We	ek	Credits	Maxin	num Mar	ks			
227130	5	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
			3			3	40	60	100			
Mid Exan	n Dur	ation: 2Hrs					End Exam	Duration	3Hrs			
Course O	bjecti [,]	ves:										
Understan	d the r	ole of business	analyti	es within	n anorg	ganization.						
≻ Ar	nalyze	data using stat	istical a	nd data i	mining	techniques	and understan	d relations	ships			
be	etweer	the underlying	g busine	ss proce	sses of	f anorganiza	ation.		1			
≻ To	 To gain an understanding of how managers use business analytics to formulate and solve 											
bi	business problems and to support managerial decisionmaking.											
 business problems and to support managerial decisionmaking. To become familiar with processes needed to develop, report, and analyze 												
h	isines	sdata Use decis	ion-mal	cing tool	ls/One	rations rese	archtechniques	2.				
> M	ange h	usiness proces	s ilsing :	analytics	al and i	managemer	ottools	•				
	nalvze	and solve process	blems fr	om diffe	erent in	ndustries su	ch as manufact	uring ser	vice			
r	tail a	oftware bankin	a and fi		norte	nharmacaut	ical aerospace	ato	vice,			
10	an, so	Jitwale, Dalikin	ig and n	nance, s	pons,	pharmaceu	ical, actospace	eic.				
Comment		0	£1		- 6 41- 1-		-4	1-1 - 4 -				
	tudon	te will domonst	roto kno	pletion (of dat	course, the	students will b	e able to				
CO1	tuden	ts will demonst	trate KII	ohility	of thin	aanaryues.	in malting dagi	iona haaa	don			
	lata an	d deepanalytic		aomty (or unn	K critically	in making deci	sions base	u on			
	tudon	te will domone	s. trata tha	ability	0 1100	technical	ille in prodicat	ive and				
	rescri	ntive modeling	to supp	ort husi	nessde	cision-maki	ing in predication	ive anu				
CO4	Studen	ts will demonst	trate the	ability t	o tran	late data in	to clear action	ableinsigh	its			
	ruuen			aonity (o uan			uoremorgi				

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modeling, sampling and estimation methods overview.

UNIT II

Trendiness and Regression Analysis: Modeling Relationships and Trends in Data, simple Linear Regression.Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT III

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes.Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modeling, nonlinear Optimization.

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models.

Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model,

Overbooking Model, Cash Budget Model.

UNIT V

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, the Value of Information, Utility and Decision Making. Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Datajournalism.

- 1. Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, "Business analytics Principles, Concepts, and Applications", Pearson FT Press.
- 2. James Evans, "Business Analytics", Pearsons Education

Course	Title	INI	DUSTR	IAL SA	FETY		M. Tech. ES	&VLSI	(II Sem			
Course	Code	Category	Но	urs/Wee	ek	Credits	Maxin	um Mar	ks			
22713	306	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
		3 3 40 60 100 m Duration: 2Hrs End Exam Duration: 3Hrs										
Mid Exa	xam Duration: 2HrsEnd Exam Duration: 3Hrs											
Course	Objecti	ves:										
F ≺	o Unde	erstand the Fund	lamenta	ls of ma	intenaı	nce enginee	ring.					
r <	o Unde	erstand the Fire	preventi	ion and f	firefigh	nting, equip	ment andmetho	ods.				
> A	Analyze	the fault tracing	g-conce	pt and in	nporta	nce.						
Course	Outcon	nes: On success	ful com	pletion of	of this	course, the	students will be	e able to				
CO 1	To Un	derstand the Fu	ndamen	tals of n	nainter	nance engine	eering					
CO 2	To Understand the Fire prevention and firefighting, equipment and methods											
CO 3	Analyze the fault tracing-concept and importance											
CO 4	Analyz	ze the Steps/pro	cedure	for perio	dic an	d preventive	e maintenance					

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and fire fighting, equipment and methods.

UNIT II

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT III

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT IV

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic,automotive, thermal and electrical equipment"s like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internalcombustion engine, v. Boiler,

Electrical motors, Types of faults in machine tools and their generalcauses

UNIT V

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii.Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept andimportance

- 1. Higgins & Morrow, "Maintenance Engineering Handbook", Da Information Services.
- 2. H. P. Garg, "Maintenance Engineering", S. Chand and Company.
- 3. Audels, "Pump-hydraulic Compressors", Mc graw Hill Publication

Course	Title	Fitle OPERATION RESEARCH					M. Tech. ES &VLSI III Sem			
Course	Code	Category	Ho	urs/We	ek	Credits	Maximum Marks			
22713	307	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3			3	40	60	100	
Mid Exam Duration: 2HrsEnd Exam Duration: 3Hrs								: 3Hrs		
Course Objectives:										
\blacktriangleright To understand the dynamic programming to solve problems of discret and continuous										
variables.										
Course Outcomes: On successful completion of this course, the students will be able to										
CO 1	Able to apply the dynamic programming to solve problems of discreet and continuous variables.									
CO 2	Able to apply the concept of non-linearprogramming									
CO 3	Able to carry out sensitivity analysis									
CO 4	Able to model the real world problem and simulateit									

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

UNIT II

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

UNIT III

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

UNIT IV

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

UNIT V

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

- 1. H.A. Taha, "Operations Research An Introduction", PHI, 2008
- 2. H.M. Wagner, "Principles of Operations Research", PHI, Delhi, 1982.
- J.C. Pant, "Introduction to Optimisation: Operations Research", Jain Brothers, Delhi,2008
- 4. Hitler Libermann, "Operations Research", McGraw Hill Pub, 2009
- 5. Panner Selvam, "Operations Research", Prentice Hall of India, 2010

Course	COST MANAGEMENT OF ENGINEERING PROJECTS)F FS	M. Tech. ES &VLSI III Sem			
Course	Code	Category	Hours/Week			Credits	Maximum Marks			
2271308		OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3			3	40	60	100	
Mid Exa	Mid Exam Duration: 2HrsEnd Exam Duration: 3Hrs								3Hrs	
Course Objectives:										
► 7	To under	rstand the Over	view of	the Stra	tegic C	ost Manage	ement Process.			
To understand Cost Behavior and Profit Planning Marginal Costing										
Course Outcomes: On successful completion of this course, the students will be able to										
CO 1	To understand the Overview of the Strategic Cost Management Process									
CO 2	Analyze various stages of project execution									
CO 3	Evaluate Bar charts and Network diagram									

Introduction and Overview of the Strategic Cost Management Process: Cost concepts in decision-making; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

UNIT II

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non- technical activities.Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts.Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

UNIT III

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems.Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector.

UNIT IV

Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT V

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

- 1. "Cost Accounting A Managerial Emphasis", Prentice Hall of India, NewDelhi
- 2. Charles T. Horngren and George Foster, "Advanced Management Accounting"
- 3. Robert S Kaplan, Anthony A. Alkinson, "Management & Cost Accounting"
- 4. Ashish K. Bhattacharya, "Principles & Practices of Cost Accounting", A. H. Wheeler publisher
- N.D. Vohra, "Quantitative Techniques in Management", Tata McGraw Hill Book Co. Ltd.

Course '	Title	COMPOSITE MATERIALS					M. Tech. ES &VLSI III Sem			
Course (Code	Category	Hours/Week (Credits	Maximum Marks			
22713	09	OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3			3	40	60	100	
Mid Exa	Mid Exam Duration: 2HrsEnd Exam Duration: 3Hrs									
Course Objectives:										
➢ T	o unde	rstand thechara	cteristic	s of Con	nposite	materials				
To understand Manufacturing of Metal Matrix Composites										
Course Outcomes: On successful completion of this course, the students will be able to										
CO 1	1 understand the Classification and characteristics of Composite materials									
CO 2	Analyze the Manufacturing of Ceramic Matrix Composites									
CO 3	Analyze the Manufacturing of Polymer Matrix Composites									

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites.Functional requirements of reinforcement and matrix.Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

UNIT II

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

UNIT III

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostaticpressing.Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT IV

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT V

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

TEXT BOOKS

- 1. R.W.Cahn , VCH, "Material Science and Technology", Vol 13 , Composites, West Germany.
- 2. WD Callister, Jr., Adapted by R. Balasubramaniam, "Materials Science and Engineering An introduction", John Wiley & Sons, NY Indian edition, 2007.

- 1. Ed-Lubin, "Hand Book of Composite Materials".
- 2. K.K.Chawla, "Composite Materials".
- 3. Deborah D.L. Chung, "Composite Materials Science and Applications".
- 4. Danial Gay, Suong V. Hoa, and Stephen W. Tasi, "Composite Materials Design and Applications"

Course	Title	e WASTE TO ENERGY					M. Tech. ES &VLSI III Sem		
Course	Code	Category	Hours/Week Cre			Credits	Maximum Marks		
2271310		OEC	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3			3	40	60	100
Mid Exam Duration: 2HrsEnd Exam Duration: 3Hrs									
Course	Course Objectives:								
> To understand the Classification of waste as fuel – Agro based, Forest residue Industrial									
waste - MSW – Conversion devices – Incinerators									
Course Outcomes: On successful completion of this course, the students will be able to									
CO 1	1 Understand the Classification of waste as fuel								
CO 2	Explain the Properties of biogas								
CO 3	Design and constructional features - Biomass resources and their classification -								
	Biomass conversion processes								

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

UNIT II

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

UNIT III

Biomass Gasification:Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

UNIT IV

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

UNIT-V

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme inIndia.

- 1. Desai, Ashok V., "Non-Conventional Energy", Wiley Eastern Ltd., 1990.
- Khandelwal, K. C. and Mahdi, S. S., "Bio gas Technology A Practical Hand Book", Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Challal, D. S., "Food, Feed and Fuel from Biomass", IBH Publishing Co. Pvt. Ltd., 1991.
- C. Y. Were Ko Brobby and E. B. Hagan, "Biomass Conversion and Technology", John Wiley & Sons, 1996