K. S. R. M. College of Engineering

(AUTONOMOUS)

Kadapa, Andhra Pradesh, India – 516005 Approved by AICTE & New Delhi, Affiliated to JNTUA, Ananthapuramu.

Department of Electrical & Electronics Engineering

List of Open Electives Offering to Other Branches (B. Tech., R20)

S. No.	Subject Code	SUBJECT	SC	L	Т	P	IM	EM	CR
		Open Elective Course - I (OEC-I)							
1	20OE201	Modern Control Theory	OEC	3	0	0	40	60	3
2	20OE202	Programming Fundamentals for Numerical Computations	OEC	3	0	0	40	60	3
		Open Elective Course – II (OEC-II)							
3	20OE203	Energy Conversion Systems	OEC	3	0	0	40	60	3
4	20OE204	Smart Grid	OEC	3	0	0	40	60	3
		Open Elective Course - III (OEC-III)							
5	20OE205	Intelligent Control Techniques	OEC	3	0	0	40	60	3
6	20OE206	Electrical System Estimation & Costing	OEC	3	0	0	40	60	3
		Open Elective Course - IV (OEC-IV)							
7	20OE207	Basics of Power Electronics	OEC	3	0	0	40	60	3
8	20OE208	System Reliability Concepts	OEC	3	0	0	40	60	3

Course Title	Modern	Con	trol '	Γheo	ry	B. Tech. EEE Open Elective - 1				
Course Code	Category	Hours/Week Credits			Credits	Maximum Marks				
20OE201	·		P	С	Continuous Internal Assessment	End Exam	Total			
	(OEC)	3	0	0	3	40	60	100		
N	Mid Exam Duration: 1Hr30M End Exam Duration: 3Hrs									
	Course Objectives: Students are able to learn the State Space, Describing function, phase plane and stability analysis including controllability and observability.									
Course O	utcomes: On s	ucces	sful	comp	oletion of	this course, the student	s will b	e able		
CO 1	Understand the	conc	ept o	f Stat	e Space To	echniques				
CO 2	Analyze the sta	bility	of li	near a	and nonlin	ear Systems				
CO 3	Construct the state model of Linear Time Invariant systems and Lyapunov functions for nonlinear systems									
CO 4	Determine Eige observability of					atrix and examine the cor	ntrollabil	ity and		

UNIT - I

CO 5

State variable descriptions: Concepts of state, state variables, state vector, state space model, representation in state variable form, phase variable representation.

Design state feedback controller and observer

UNIT - II

Solution of State Equations: diagonalization —state transition matrix — properties - .solution of state equations of homogeneous and non-homogeneous systems.

<u>UNIT – III</u>

Controllability and Observability: Definition of controllability – controllability tests for continuous linear time invariant systems – Definition of observability – observability tests for continuous linear time invariant systems,

UNIT - IV

Design of Control Systems: Introduction, Pole placement by state feedback, Full order and reduced order observers,

UNIT - V

Stability: Introduction, equilibrium points – stability concepts and definitions – stability in the sense of Lyapunov - stability of linear system – methods of constructing Lyapunov functions for non-linear system: Krasovskii's method – Variable gradient method.

Text Books

- 1. Modern Control System Theory by M. Gopal, New Age International Publishers, 2nd edition, 1996.
- 2. Control System Engineering by I. J. Nagarath and M. Gopal, New Age International (P) Ltd.

- 1. Modern Control Engineering by K. Ogata, Prentice Hall of India, 3rd Edition, 1998.
- 2. Systems and Control by Stainslaw, H. Zak, Oxford Press, 2003.
- 3. Digital Control and State Variable Methods by M. Gopal, TMH, 1997.

Course Title	Programmir Numeric	_			B. Tech. EEE Open Elective - I			
Course Code	Category	Hours/Week			Credits	Maximum Marks		
20OE202	Open Elective (OEC)	L	Т	P	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
1	Mid Exam Durat	ion :	End Exam Durat	ion: 3	Hrs			

Course Objectives: The main objective of the course is to make the students familiar with scripts, functions, control flow and plotting and use them to solve various engineering problems.

Course Outcomes: On successful completion of this course, the students will be able to,

CO 1	Understand basic features, arrays and symbolic algebra.
CO 2	Analyze various control flow structures, interpolation and curve fitting
CO 3	Solve linear equations, Polynomials
CO 4	Plot two-dimensional and three-dimensional graphics

UNIT-I

Basics Fundamental Features: Basic features, script M-files, code cells, arrays creation, addressing and array operations; multi dimensional arrays.

UNIT-II

Control Flow: Arithmetic & Logical operators, control flow - if, if-else, for, while, switch case constructions and functions.

UNIT-III

Mathematical Operations: Matrix algebra and solutions to systems of linear equations, polynomials, Numerical integration, numerical differentiation

UNIT-IV

Graphics & Numerical techniques: Two-dimensional graphics, basics of three-dimensional graphics, interpolation, curve fitting.

UNIT-V

Symbolic Mathematics: Symbolic algebra, equation solving, differentiation and integration.

Text Books

- 1. Hanselman and Littlefield, "Mastering MATLAB 7", Pearson Education Etter,
- 2. Kuncickly, Hull, "Introduction to MATLAB 6", Pearson Education.

Energy	Conv	ersio	n Sys	stems	B. Tech. EEE Open Elective - II			
Category	Hou	ırs/W	eek/	Credits	Maximum Marks			
Open Elective (OEC)	L	L T P		C	Continuous Internal Assessment	End Exam	Total	
	3	0	0	3	40	60	100	
d Exam Dura	ation	End Exam Duration : 3Hrs						
	Open Elective (OEC)	Category Hou Open Elective (OEC) 3	Category Hours/W Open Elective (OEC) 3 0	Category Hours/Week Open Elective (OEC)	Open L T P C Elective (OEC)	Category Hours/Week Credits Maximum M Open Elective (OEC) 1		

Course Objectives: The objective of the course is to learn about energy conversion techniques, sources of electrical energy production and impact of energy conversion systems on environment.

Course Outcomes : On successful completion of this course, the students will be able to							
CO 1	Understand various energy conversion systems, fuel cells & batteries						
CO 2	Analyze solar and wind energy conversion process						
CO 3	Illustrate Ocean Energy Conversion systems						
CO 4 Explain the environmental effects of Energy Conversion Systems.							

UNIT I

Photo Voltaic Power Generation: Spectral distribution of energy in solar radiation, solar cell configurations, voltage developed by solar cell, photo current and load current, practical solar cell performance, test specifications for PV systems.

UNIT II

Wind Energy Conversion: Power from wind, properties of air and wind, types of wind Turbines, operating characteristics.

UNIT III

Tidal Power Station: Tides and Tidal power stations - modes of operation of Tidal project - Turbines and Generators for Tidal Power generation.

Ocean Thermal Energy Conversion: Types of ocean thermal energy conversion systems, Application of OTEC systems examples.

UNIT IV

Miscellaneous Energy Conversion Systems: Biomass conversion, Geothermal energy, Thermo electric energy conversion: Seebeck effect, Peltier and Thomson effects and their coefficients – Thermo-Electric Generator – Peltier Cooling

UNIT V

Fuel Cells & Batteries: Introduction - principles of EMF generation - description of fuel cells - Batteries, Description of batteries, Battery applications for large power.

Environmental Effects: Environmental Effects of Energy Conversion Systems, Pollution from coal and preventive measures - steam stations and pollution - pollution free energy systems.

Text Books

- 1. "Energy conversion systems" by Rakosh das Begamudre, New age international Private Ltd., publishers, 1st Edition, 2000.
- 2. "Renewable Energy Resources" by John Twidell and Tony Weir, CRC Press (Taylor & Francis).

Course Title		Sma	ırt Gı	rid		B. Tech. EEE Open Elective - II			
Course Code	Category	Hou	Hours/Week Credits		Credits	Maximum Marks			
20OE204	Open Elective	L	L T P		С	Continuous Internal Assessment			
	(OEC)	Course (OEC) 3 0 0			3	40	60	100	
Mi	Mid Exam Duration: 1Hr30M End Exam Duration: 3Hrs							Hrs	
						fundamentals, Architect measuring technologies			
On success	ful completi	on of	this	cours	e, the stud	lents will be able to			
CO 1	Understand	d the	featur	es, fu	ndamenta	l components and archite	ecture of	smart grid	
CO 2	Explain information, communication and networking technologies involved with the smart grid								
CO 3	Explain operation and importance of PMU, WAMPS and smart storage systems in smart grid								
CO 4	Analyze M	icrog	rid w	ith va	arious con	cepts and challenges in t	future		

UNIT-1

Introduction to Smart Grid: Working definitions of Smart Grid and Associated Concepts – Need of Smart Grid – Smart Grid Functions – Opportunities & Barriers of Smart Grid - Conventional Power Grid and Smart Grid - Concept of Resilient & Self-Healing Grid.

UNIT-II

Smart Grid Architecture: Components and Architecture of Smart Grid – Review of Proposed Architectures for Smart Grid – The Fundamental Component of Smart Grid Designs – Transmission Automation – Distribution Automation – Renewable Integration.

UNIT-III

Information and Communication Technology: Smart sensors, Wired and wireless communication Technology, Network Structures (**HAN, LAN, NAN, WAN**), Introduction to Smart Meters – Advanced Metering Infrastructure (AMI).

UNIT-IV

Smart Grid Technologies: Geographic Information System (GIS) - Intelligent Electronic Devices (IED) - Smart storage like Battery- SMES - Pumped Hydro - Compressed Air Energy Storage - Wide Area Measurement System (WAMS) – SCADA - Phase Measurement Unit (PMU).

UNIT - V

Micro grids and Distributed Energy Resources: Concept of micro grid, need & application of micro grid, formation of micro grid, Issues of interconnection, protection & control of micro grid, Plastic & Organic solar cells, thin film solar cells, Variable speed wind generators, and fuel cells.

Text Books

- 1. Janaka Ekanayake, Kithsir iLiyanage, Jian zhong. Wu, Akihiko Yokoyama, Nick Jenkins, "Smart Grid: Technology and Applications"- Wiley, 2012.
- 2. Stuart Borlase, Smart Grids, Infrastructure, Technology and Solutions, CRC Press, 1e,2013.
- 3. James Momoh, "Smart Grid: Fundamentals of Design and Analysis"- Wiley, IEEE Press, 2012.

- 1. A.G. Phadke and J.S. Thorp, "Synchronized Phasor Measurements and their Applications", Springer Edition, 2e, 2017.
- 2. James Northcote, Green, Robert G. Wilson "Control and Automation of Electric Power Distribution Systems (Power Engineering)", CRC Press.
- 3. Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability", Artech House Publishers July 2011.
- 4. 4. Clark W Gellings, "The Smart Grid, Enabling Energy Efficiency and Demand Side Response"- CRC Press, 2009.

Course Title	Intelligen	ıt Coı	ntrol	Tech	niques	B. Tech. EEE Open Elective - III			
Course Code	Category	Hou	ırs/W	eek/	Credits	Maximum Marks			
20OE205	Open Elective (OEC)	L	T	P	С	Continuous Internal Assessment	End Exam	Total	
		3	1	0	3	40	60	100	
Mi	d Exam Dui	ratior	ı: 1H	End Exam Durati	on : 3Hı	rs			

Course Objectives: The objective of the course is to learn neural network and fuzzy logic concepts and foster their abilities in designing and implementing soft computing based solutions for real-world and engineering problems.

Course O	Course Outcomes: On successful completion of this course, the students will be able to							
CO 1	Inderstand architecture and approach to Artificial intelligence							
CO 2	Understand the fundamental theory and concepts of neural networks, Identify different neural network architectures, algorithms and their models							
CO 3	Understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy inference systems, and fuzzy logic systems							
CO 4	Understand the Bio-inspired and Swarm Intelligence Algorithms							

UNIT - I

Introduction to Artificial Intelligence: Introduction and motivation – Approaches to AI – Architectures of AI – Symbolic Reasoning System –Rule based Systems – Knowledge Representation.

UNIT - II

Artificial Neural Networks: Basics of ANN - Comparison between Artificial and Biological Neural Networks - Basic Building Blocks of ANN - Artificial Neural Network Terminologies - McCulloch Pitts Neuron Model - Learning Rules.

UNIT - III

ADALINE and MADALINE Models – Perceptron Networks – Back Propagation Neural Networks – Associative Memories Neural Networks as Associative Memories

UNIT - IV

Fuzzy Logic: Classical Sets – Fuzzy Sets – Fuzzy Properties and Operations – Fuzzy Logic System – Fuzzification – Defuzzification – Membership Functions – Fuzzy Rule base – Fuzzy Logic Controller Design.

UNIT - V

Evolutionary Computation - Overview of other Bio-inspired Algorithms - Swarm Intelligence Algorithms

Text Books

- 1. Introduction to Neural Networks using MATLAB by S. N. Sivanandam, S. Sumathi and S. N. Deepa, Tata McGraw Hill Edition, 2006.
- 2. Kumar S., "Neural Networks A Classroom Approach", Tata McGraw Hill, 2004.
- 3. Fuzzy Logic with Engineering Applications by Timothy J. Ross, WILEY India Edition, 3rd Edition, 2012.

- 1. Intelligent System Modeling, Optimization & Control by Yung C. Shin and Chengying Xu, CRC Press, 2009.
- 2. Eiben A. E. and Smith J. E., "Introduction to Evolutionary Computing", Second Edition, Springer, Natural Computing Series, 2007.
- 3. Engelbrecht A. P., "Fundamentals of Computational Swarm Intelligence", John Wiley & Sons, 2006.

Course Title	Electrical	•	em Es		tion &	B. Tech. EEE Open Elective - III			
Course Code	Category	Но	urs/V k	Vee	Credit s	Maximum Marks			
20OE206	Open Elective	L	Т	P	С	Continuous Internal Assessment	End Exam	Total	
	(OEC)	3	0	0	3	40	60	100	
Mi	Mid Exam Duration: 1Hr30M End Exam Duration: 3Hrs								
	•					s to learn about estimation hemes and its calculation	•	sting of	
Course Ou	tcomes: On s	ucces	ssful	comp	letion of	this course, the students v	will be abl	le to	
CO 1	Understand principles of wiring systems and its estimation based on choice of wiring system								
CO 2	Understand	Understand the concepts of earthing systems							
CO 3	Understand	vario	us lig	ghten	ing schen	nes and its calculations u	sed for do	omestic	

UNIT-I

CO 4

and industrial applications

General principles of estimating: Estimating – purpose of estimating and costing – catalogues - market survey and source selection - determination of required quantity of materials determination of cost material and labor.

Analyze estimation of wiring to residential & commercial buildings

Wiring systems: Introduction – Systems of distribution of electrical energy – methods of wiring – systems of wiring – choice of wiring systems.

<u>UNIT – II</u>

Earthing Systems: Earthing – Points to be earthed – Factors influencing earth resistance – methods od reducing Earth resistance – Design data on earth electrodes – Methods of earthing - determination of size of earth wire and earth plate - Effects of electric current on Human body – Measurement of earth resistance.

UNIT - III

Lighting schemes and calculations: Types of lighting circuits – Various circuit diagrams – Two way switching – Aspects of good lighting service – Types of lighting schemes – Filament Lamps- Gas filled Lamps – Fluorescent Tubes - LED lamp – Compact Fluorescent lamp (CFL) - comparison between LED and CFL - terms used in illumination - laws of illumination.

UNIT - IV

Estimation of lighting schemes: Design of lighting schemes - Factory lighting - Public lighting installations: Classification – General principles – Design – Selection of equipment -Street lighting – Methods of lighting calculations.

UNIT-V

Internal wiring estimation: General rules for wiring – determination of number of points – determination of total load – determination of sub circuits – determination of ratings of main switch and distribution board – determination of size of conductor – layout – simple problems.

Text books

- 1. Electrical installation estimating & Costing J.B.Gupta, S.K.Kataria& sons.
- 2. Electrical design estimating and costing K.B.Raina&S.K.Bhattacharya, NewAge International (P) Limited publishers.

- 1. Power System Analysis and Design Dr.B.R.Gupta, S.Chand Publications
- 2. Electrical Estimating methods Wayne J.Del Pico, Wiley Publishers

Course Title	Basic	cs of F	Power	Elect	ronics	B. Tech. EEE Open Elective - IV			
Course Code	Category	Ho	urs/W	eek	Credits	Maximum Marks			
20OE207	Open Elective (OEC)	L	Т	P	С	Continuous Internal Assessment	End Exam	Total	
		3	0	0	3	40	60	100	
M	id Exam Du	ratio	n : 1H	End Exam Durati	on: 3I	Irs			

Course Objectives: The objective of the course is to learn basic fundamentals of power electronics devices and to classify the different kinds of power electronics circuits as a function of the input source and loads.

Course Outcomes: On successful completion of this course, the students will be able to,

CO 1	To understand the characteristics of different power switches.
CO 2	To understand the single phase and three phase controlled rectifier with different loads
CO 3	To understand the operating principle of cyclo converters, choppers and inverters
CO 4	To understand harmonic content in output voltage and current waveforms of an inverter.

UNIT - I

Fundamentals of Power Semi-conductor devices: SCR – static characteristics –turn on and off mechanism – MOSFET, IGBT, GTO Characteristics.

UNIT - II

Phase controlled Rectifiers(AC to DC): Phase controlled rectifiers – single phase half and fully controlled converters – midpoint and bridge connections with R and RL loads – effect of source inductance- three phase half controlled converters with R load .

UNIT - III

AC Voltage Controllers (AC to AC): AC voltage controllers- single phase ac voltage controllers with SCR for R and RL load – cyclo converters – single phase cyclo converters (mid-point configuration) with R load.

UNIT - IV

Choppers (**DC** to **DC**): Choppers – principle of operation – control strategies- types of chopper circuits – type A, type B- buck -boost converter.

UNIT - V

Inverters (**DC to AC**): Inverters – single phase half bridge and full bridge inverters with R and RL load –output voltage control techniques - PWM techniques- harmonic reduction techniques.

Text Books

1. Power Electronics –M.D Singh & K.B. Kanchandhani, TMH publications, 1998.

2. Power Electronics - Circuits, Devices and Applications –M.H. Rashid, Prentice Hall of India, 2^{nd} Edition 1998.

- 1. Power Electronics- P.S. Bimbhra, Khanna Publications.
- 2. Power Electronics Vedam Subramanyam, New Age Information Limited, 3rd
- Power Electronics –V.R. Murthy, Oxford University Press, 1st Edition 2005.
 Power Electronics –P.C Sen, Tata Mc Graw Hill Publishing.

Course Title	System Reliability Concepts					B. Tech. EEE Open Elective - IV			
Course Code	Category	Hours/Week Cre			Credits	Maximum Marks			
20OE208	Open Elective (OEC)	L	Т	P	С	Continuous Internal Assessment	End Exam	Total	
		3	1	0	3	40	60	100	
Mid Exam Duration: 1Hr30M						End Exam Duration: 3Hrs			
Course Objectives: The objective of the course is to learn basic probability theory, network modeling, time dependent probability, markov modeling and system reliability evaluation. Course Outcomes: On successful completion of this course, the students will be able to									
CO 1	Understand the concept of basic probability theory, binomial distribution, network reliability, reliability functions, time dependent probability, markov chains & process and system reliability								
CO 2	Apply probability rules to find probability distributions, network reliability for series, parallel, series-parallel, complex networks								
CO 3	Analyze the failure rate distributions, bath-tub curve, STPM, continuous markov process and frequency duration techniques for single and two repairable components								
CO 4	Evaluate transitional rates, cumulative probability and frequency n-component repairable models								

UNIT-I

Basic Probability Theory: Basic concepts – Rules for combining Probabilities of events – Failure Density and Distribution functions – Bernoulli's trials – Binomial distribution – Expected value and standard deviation for binomial distribution – Examples.

UNIT-II

Network Modeling and Reliability Evaluation: Basic concepts — Evaluation of network Reliability / Unreliability — Series systems, Parallel systems, Series - Parallel systems, partially redundant systems — Types of redundancies - Evaluation of network Reliability / Unreliability using conditional probability method — Paths based and Cut set based approach — Examples.

UNIT-III

Time Dependent Probability: Basic concepts - Reliability functions f(t), F(t), R(t), h(t) - Relationship between these functions - Bath tub curve - Expected value and standard deviation of Exponential distribution - Measures of reliability - MTTF, MTTR, MTBF - Evaluation of network reliability / Unreliability of simple Series, Parallel - Examples.

UNIT-IV

Discrete Markov Chains: Basic concepts – Stochastic transitional Probability matrix (STPM) – Limiting State Probability evaluation – Absorbing states.

Continuous Markov Processes: Modeling concepts – State space diagrams – time dependent reliability evaluation of single component repairable model – Evaluation of Limiting State Probabilities of one, two component repairable models – Frequency and duration concepts – Frequency balance approach.

UNIT-V

Multi Component & Approximate System Reliability Evaluation: Recursive relation for evaluation of equivalent transitional rates, cumulative probability and cumulative frequency and 'n' component repairable model - Series systems, Parallel systems, Basic reliability indices – Cut-set approach – Examples.

Text Books

- 1. Reliability Evaluation of Engineering Systems by Roy Billinton and Ronald N. Allan, Reprinted in India B. S. Publications, 2007.
- 2. System Reliability Concepts by V. Sankar, Himalaya Publishing House, 2015.

- 1. Reliability Engineering by E. Balagurusamy, Tata McGraw Hill, 2003.
- 2. Reliability and Maintainability Engineering by Charles E. Ebeling, Tata McGraw Hill, 2000.