K.S.R.M.	CO	LLEGE	OF ENGI	NEE	RING, KAD	APA	Dept.:	H&S
		(A	utonomoi	us)			Acad	demic Year
B. Tec	h M	id Term	Examinat	ions (of April – 20	24	202	23 - 2024
Course Code	:	2321201	Course:		FERENTIAL LCULUS	EQUATI	ONS AND	VECTOR
Mid Term	:	I	Marks:	50	Regulation:	R23UG	Duration:	120 Minutes
Semester	:	II	Section:	Com	mon to All Bra			April, 2024

2. Answering the questions in Part-A is compulsory.

3. All Questions from Part B are to be answered with internal choice among them.

PART-A

05*02 = 10 Marks

Q. No	Question(s)	Marks	CO	BL
1.(a)	Solve $x dy - y dx = xy^2 dx$.	2M	CO1	L3
(b)	Solve $x dx + y dy = \frac{a^2(x dy - y dx)}{x^2 + y^2}$	2M	CO1	L3
(e)	Find the integrating factor of $y' + y = e^{e^x}$.	2M	CO1	L1
(d)	Find the Wronskian for the differential equation $(D^2 - 2D)y = e^x \sin x$.	2M	CO2	L1
(e)	Solve $(D^4 + 8D^2 + 16)y = 0$.	2M	CO2	L3

PART-B

Q. No	Question(s)	Marks	CO	BL
2	(a) Solve $(1 + y^2)dx = (tan^{-1}y - x)dy$. (b) Solve $x \frac{dy}{dx} + y = x^3y^6$.	5M	CO1	L3
	(OR)	5M	CO1	L3
2				
3	(a) Solve $(1 + 2xy\cos x^2 - 2xy)dx + (\sin x^2 - x^2)dy = 0$ (b) Solve $(y \log y)dx + (x - \log y)dy = 0$.	5M 5M	CO1	L3 L3

4	A body is originally at 80°c cools down to 60°c in 20 minutes, the temperature of the air being 40°c. Determine the temperature of the body after 40 minutes from the original?	10M	CO1	L5
	(OR)	L		
5	Uranium disintegrates at a rate proportional to the amount then present at any instant. If M_1 and M_2 grams of uranium are present at time T_1 and T_2 respectively. Determine the half-life of uranium.	10M	CO1	L5

6	Solve $(D^2 - 2D + 4)y = e^x \cos x$.	10M	CO2	L3
i ei	(OR)		L	<u></u>
7	Solve $(D-2)^2y = 8(e^{2x} + \sin 2x + x^2)$	10M	CO2	L3

8	Solve $(D^2 - 4D + 4)y = 8x^2e^{2x}sin2x$.	10M	CO2	L3
	(OR)	T		
9	Using the method of variation of parameters, solve $\frac{d^2y}{dx^2} + 4y = tan2x$	10M	CO2	L3

Common to Civil Dept.: K.S.R.M. College of Engineering, Kadapa & Mechanical (Autonomous) **Academic Year** B. Tech Mid Term Examinations of April - 2024 2023 - 2024 **Engineering Chemistry** : 23EC202 Subject: **Subject Code** Duration: 120 Min R23UG Regulation: Marks: 1 : Mid Term Date: 2nd April 2024 : IL Section: Semester

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the questions in Part-A is compulsory

3. All Questions from Part B are to be answered with internal choice among them.

10	AT	חים	Г.	A
-	A		-	4

05*02 = 10 Marks

	Question (s)	Marks	со	BL
Q. No		2 M	CO2	12
1 (a)	Define Battery & classify them	2 M	CO2	1.2
(b)	Define Dry corrosion and write its types.			11
(c)	List any two differences between Electroplating & Electroless plating	2 M	CO2	
	Define Hardness. Mention its units.	2 M	CO1	L1
(d)		2 M	CO1	L1
(e)	Write the expression for Hardness of water.			

PART-B

Question (s)	Marks	со	BL
Estimate the amount the Hardness present in water sample by EDTA	10M	CO1	L5
Method.		eres a para a sua a	
A sample of water on analysis has been found to contain the following salts. Calculate Temporary Hardness, Permanent Hardness and Total Hardness in terms of Degree Clark. $Ca(HCO_3)_2 = 15.5 \text{ PPM}$, $Mg(HCO_3)_2 = 17.5 \text{ PPM}$, $CaSO_4 = 10.5 \text{ PPM}$, $CaCl_2 = 9.2 \text{ PPM}$ (Molecular weights - $Ca(HCO_3)_2 = 162$,	10M	CO1	L3
101g(11CO3 72 - 140, Case4	1000	601	L4
Simplify Ion Exchange process with a neat diagram.	10M	COI	
	10M	CO1	L2
Explain Boiler Troubles		7	
Draw the neat diagram of Zinc air battery and write the discharging &	10M	CO2	L5
charging process.			
	10M	CO2	L4
Describe the factors that influence corrosion.			
	10M	CO2	L5
Derive Nernst Equation.			
	10M	CO2	L2
the state of about Electrochemical corrosion method			
	Estimate the amount the Hardness present in water sample by EDTA Method. (OR) A sample of water on analysis has been found to contain the following salts. Calculate Temporary Hardness, Permanent Hardness and Total Hardness in terms of Degree Clark. Ca(HCO ₃) ₂ = 15.5 PPM, . Mg(HCO ₃) ₂ = 17.5 PPM, CaSO ₄ = 10.5 PPM, CaCl ₂ = 9.2 PPM (Molecular weights - Ca(HCO ₃) ₂ = 162, Mg(HCO ₃) ₂ = 146, CaSO ₄ = 136, CaCl ₂ = 111) Simplify Ion Exchange process with a neat diagram. (OR) Explain Boiler Troubles Draw the neat diagram of Zinc air battery and write the discharging & charging process. (OR) Describe the factors that influence Corrosion.	Estimate the amount the Hardness present in water sample by EDTA Method. (OR) A sample of water on analysis has been found to contain the following salts. Calculate Temporary Hardness, Permanent Hardness and Total Hardness in terms of Degree Clark. Ca(HCO ₃) ₂ = 15.5 PPM, . Mg(HCO ₃) ₂ = 17.5 PPM, CaSO ₄ = 10.5 PPM, CaCl ₂ = 9.2 PPM (Molecular weights - Ca(HCO ₃) ₂ = 162, Mg(HCO ₃) ₂ = 146, CaSO ₄ = 136, CaCl ₂ = 111) Simplify Ion Exchange process with a neat diagram. (OR) Explain Boiler Troubles 10M Draw the neat diagram of Zinc air battery and write the discharging & 10M charging process. (OR) Describe the factors that influence Corrosion. 10M Derive Nernst Equation.	Estimate the amount the Hardness present in water sample by EDTA Method. (OR) A sample of water on analysis has been found to contain the following salts. Calculate Temporary Hardness, Permanent Hardness and Total Hardness in terms of Degree Clark. Ca(HCO ₃) ₂ = 15.5 PPM, . Mg(HCO ₃) ₂ = 17.5 PPM, CaSO ₄ = 10.5 PPM, CaCl ₂ = 9.2 PPM (Molecular weights - Ca(HCO ₃) ₂ = 162, Mg(HCO ₃) ₂ = 146, CaSO ₄ = 136, CaCl ₂ = 111) Simplify Ion Exchange process with a neat diagram. (OR) Explain Boiler Troubles Draw the neat diagram of Zinc air battery and write the discharging & 10M CO1 charging process. (OR) Describe the factors that influence Corrosion. 10M CO2 Derive Nernst Equation.

K	.S.R	.M. Colle	ge of Engir	neerin	g, Kadapa		Dept.:	H&S
			Autonomoi				Acad	emic Year
B. Te	ch N			,	f April – 202	4	202	3-2024
Subject Code	:	2324201	Subject:	Com	municative En	glish		
Mid Term	1:	I	Marks:	50	Regulation:	R23 UG	Duration:	120 Min
Semester	1:	II	Branch:	CSE	, AIML&EEE		Date: 02/0	04/2024 Wed

2. Answering the questions in Part-A is compulsory

3. All Questions from Part B are to be answered with internal choice among them.

PART-A

 $05 \times 02 = 10 \text{ Marks}$

Q. No	Question (s)	Marks	CO	BL
1 (a)	Who were the Young's, and what were the two possessions that they were proud of?	2 M	CO1	L5
(b)·	Explain the lines; I chatter, chatter, as I flow, To join the brimming river, For men may come and men may go, But I go on forever.	2 M	CO2	L3
(c)	Punctuate the following sentence whos there oh its you	2 M	CO1	L3
(d)	Define homophone with four examples.	2 M	COl	"L5
(e)	Insert articles where necessary. i) There is book in my backpack. Book is very heavy. ii) Sun is at highest point in sky at noon.	2 M	CO2	L2

PART-B

Q. No				Marks	CO	BL		
2.	Writ	e a note on the	e different ways	in which O.Henry to	ells his readers about	10M	CO1	L5
	the financial situation of the couple.							
				(OR)		ā gaza ir ir ir ir		
3.	a) W	rite the mean	nings/ definitio	ns to the following	words.	02 M	CO1	L2
	1	Democracy i				04 M	1	
	b) C	onstruct a di	alogue between	a Teacher and a st	udent. Student			8
	r	equests him t	04 M		12			
	c) F	rame any fou	61 - 347					
		Subject	Verb	Indirect Object	Direct Object	3/10.2 (0		
		Vasu	gave	her	a book	Major Market 1 2		
4.	Hov	has the poet	10M	CO2	L5			
	poer	n? How does						
	with	examples from	Ser Box					
	-			(OR)				
5.	a) Write a short paragraph in 120 to 150 words on "Actions speak louder						CO2	L2
	thein words".						244	
	b) Identify the parts of speech of the underlined words given below. i) Lakshmi sends e-mails to all her friends now and then.						CO2	L3
	ii	Della shops	for_two hours.		stransia, ce je se pa	ob. of		

6.	a) Punctuate the following sentence.	03M	CO1	L3
	speak telugu and hindi better than English what about you	sat na tai		
	b) Spot incorrectly spelt words and write them correctly.	04M		
	i) acheive ii) parliamant iii) refered iv) dilemma	#06 N . B		
			i	1

	c) Identify the content words and function words to the following.	. M. C		
	i) They are the magi.			
	ii) Give it to me quick.	3M	14 9	
	iii) My hair grows so fast.		Tio 2 1	
	(OR)		30.10	- A
		04M	CO1	L2
7.	a) Rewrite the jumbled words in the correct order. i) Ringing a man the doorbell is.	04101	COI	LL
	ii) Rather boring the is book.			
	iii) In the city tall buildings are.			
	iv) To college walk I every day.			
	b) Fill in the blanks with the correct homophone from the given options			
	in brackets.	5.		- 4
	i) I bought a of gloves. (pair, pare, pear)	03M	in Eq. ²	
	ii) The lioness kicked up the of her prey. (sent, scent, cent			
	iii) If you park here, the police will your car away.(tow, toe, to)	ent.	4921	
	c) Fill in the blanks with the correct homonyms from options given in		St. V. F	
	brackets	tri eril ar	H at	
	i) He was skinned.(fair,fare)	03M	T ET .	
	It was not a deal.(fair,fare)	ODIVI	14.00	
	ii) You must not always on him.(bank,bank)		27.72	
	She withdrew money from the(bank,bank)			
	iii) Please down.(write,right)	jema. c	. 12%	
	the answer.(write,right)	dig su s	26119	(4)
8.	A) Arrange the following sentences making it into a meaningful	06M	CO2	L4
	paragraph.		(P. 180	
134	a) Add another spoonful of tea leaves if you prefer your tea to e stronger.			
	b) Once spoon per cup should do unless you want it sweeter.			
	c) This will make two cups of tea once the milk is added later.			, T 4
		11 -		-
	d) When the water begins to boil, add a teaspoonful of tea leaves to it and			
	let it simmer for a minute.			= =
	e) your tea is ready to enjoy			
	f) put one and a half a cup of milk and sugar to taste.			
	g) Strain the tea and add half a cup of milk and sugar to taste.			
	h) Light the stove and place the pan on it.	13423752	248	
	B.) a) Give the antonyms to the following.	04M	CO1	L1
	i) Active ii) Lend			
	b) Give the synonyms to the following.			
	i) Back ii) Clever			
	c) Add prefix to the following.			
	i) graph ii) graduate.			
	d) Add suffix to the following.	olgnic.	O RELEV	
	i) child ii) great (OR)			
		5M	CO1	L2
9	a) Correct the following sentences where necessary.	3141		
	i) He have a factory in London.	d garan	1 4	
	ii) The English is his favourite subject.	annesta.		
	iii) Why are you going to college daily?	to again		
	iv) She does not own the car.			-
	v) I saw a eagle fly by.	1	7 . 2	
	b) Fill in the blankss with suitable prepositions and articles.	5M		
	Could you get me kilogram tea, please.It isawe inspiring		10 ON	
	sight to see Brahmaputra in spate. They go the office train.	G 722 70F	9 8	

K.S.R.M. College of Engineering, Kadapa (Autonomous)

B. Tech Mid Term Examinations of April - 2024

Common to Civil Dept.: & Mechanical Academic Year 2023 - 2024

B. Tech Ivila Term Examinations				0, Ap ===			2023 2024
Subject Code	Τ.	23EC202	Subject:	Engir	neering Chemistr		
Subject code	_ <u> </u> -			50	Regulation:	R23UG	Duration: 120 Min
Mid Term	:		Marks:	30	ricgaration		Date: 2 nd April 2024
Semester	:	IL	Section:	<u> </u>			Date: 2 April 201

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the questions in Part-A is compulsory

3. All Questions from Part B are to be answered with internal choice among them.

PART-A

05*02 = 10 Marks

Question (s)	Marks	co	BL
	2 M	CO2	L2
	2.04	CO2	L2
Define Dry corrosion and write its types.	2 101	1	
List any two differences between Electroplating & Electroless plating	2 M	CO2	L1
	2 M	CO1	L1
	2 M	CO1	L1
Write the expression for Hardness of water.			
	Question (s) Define Battery & classify them Define Dry corrosion and write its types. List any two differences between Electroplating & Electroless plating Define Hardness. Mention its units. Write the expression for Hardness of water.	Define Battery & classify them Define Dry corrosion and write its types. List any two differences between Electroplating & Electroless plating Define Hardness. Mention its units.	Define Battery & classify them Define Dry corrosion and write its types. List any two differences between Electroplating & Electroless plating Define Hardness. Mention its units. Define Hardness. Mention its units.

PART-B

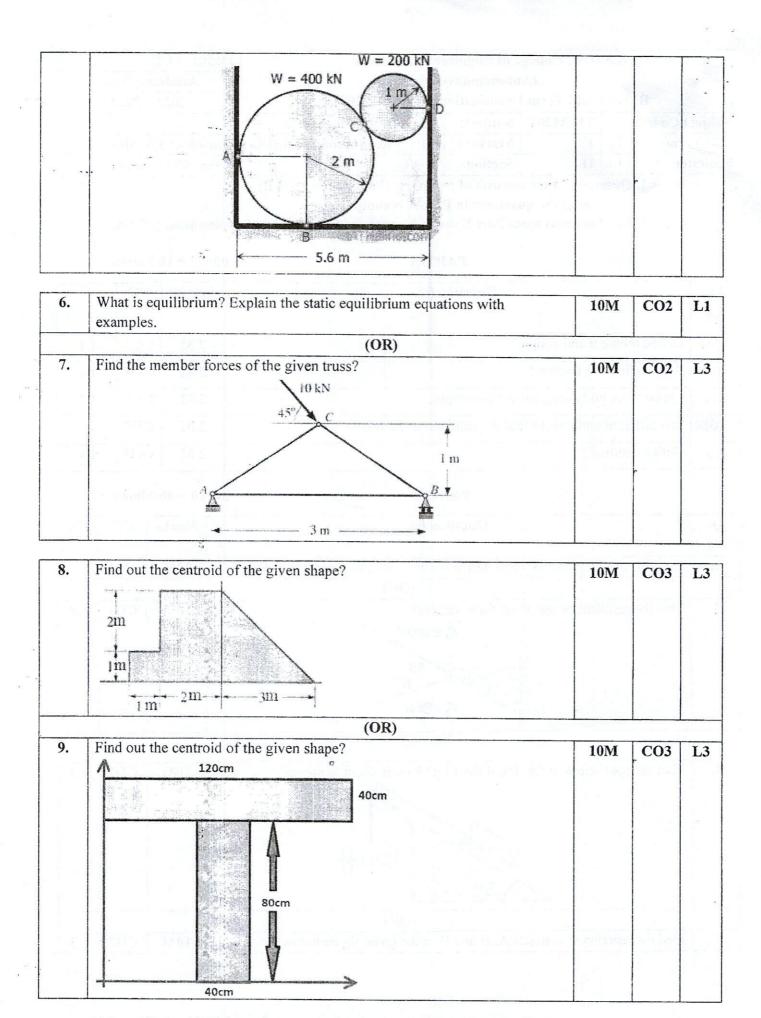
O No	Question (s)	Marks	со	BL
Q. No 2.	Estimate the amount the Hardness present in water sample by EDTA Method.	10M	CO1	L5
	(OR)		1 204	- 13
3.	A sample of water on analysis has been found to contain the following salts. Calculate Temporary Hardness, Permanent Hardness and Total Hardness in terms of Degree Clark. Ca(HCO $_3$) $_2$ = 15.5 PPM, . Mg(HCO $_3$) $_2$ = 17.5 PPM, CaSO $_4$ = 10.5 PPM, CaCl $_2$ = 9.2 PPM (Molecular weights - Ca(HCO $_3$) $_2$ =162, Mg(HCO $_3$) $_2$ = 146, CaSO $_4$ = 136, CaCl $_2$ = 111)	10M	C01	L3

		10M	CO1	L4
4.	Simplify Ion Exchange process with a neat diagram.			
	(OR)	54594		
		10M	CO1	L2
5.	Explain Boiler Troubles			
		1004	CO2	L5
6.	Draw the neat diagram of Zinc air battery and write the discharging &	10M	COZ	
	charging process. (OR)			
		10M	CO2	L4
7.	Describe the factors that influence Corrosion.		-l	
		10M	CO2	L5
8.	Derive Nernst Equation.		11	
	(OR)		T 500	12
	Discuss in brief about Electrochemical corrosion method	10M	CO2	L2
9.	Discuss in brief about Electrochemical control			

	K.S.	R.M. Colleg	e of Engine	ering,	Kadapa		Dept.:	CE
		(A	utonomous)			Ac	cademic Year
В.	Tech	Mid Term	Examinatio	ns of A	April – 2024			2023 - 2024
Subject Code	:	23EM204	Subject:	Engi	ineering Mecha	nics	ij.	- Jai
Mid Term	:	I .	Marks:	50	Regulation:	R23UG	Duratio	n: 120 Min
Semester	:	II	Section:	A	1.48.2		Date: 0	3-04-2024

- 2. Answering the questions in Part-A is compulsory
- 3. All Questions from Part B are to be answered with internal choice among them.


PART-A


05*02 = 10 Marks

Q.	Question (s)	Marks	CO	BL
No			70214	
1 (a)	Define moment and couple?	2 M	CO1	L1
(b)	What is limiting friction?	2 M	CO1	L1
(c)	Explain free body diagram with example.	2 M	CO2	L1
(d)	List different methods to find the resultant of forces?	2 M	CO2	L1
(e)	Define centroid?	2 M	CO3	L1

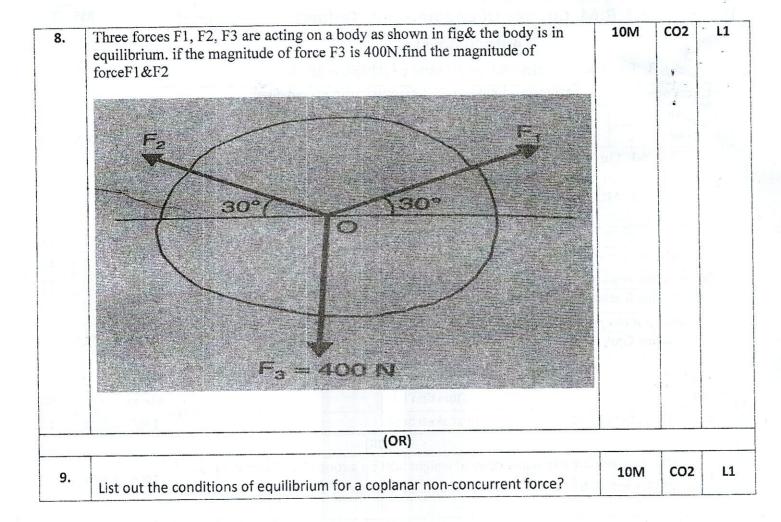
PART-B

Q. No	Question (s)	Marks	СО	BL
2.	Explain parallelogram law and derive the equations for resultant of force.	10M	CO1	L2
	(OR)			
3.	Find the resultant of the given force system? $F_1 = 100 \text{ N}$ $C = 36$	10M	C01	L3

L1-Remembering; L2-Understanding; L3-Applying; L4-Analyzing; L5-Evaluating; L6-Creating

K.S.R.M. College of Engineering, Kadapa Dept.: ME **Academic Year** (Autonomous) B. Tech Mid Term Examinations of APRIL - 2023 2023 - 2024 **Subject Code** 23EM204 **ENGINEERING MECHANICS** Subject: Mid Term : 1 Marks: 50 Regulation: R23UG Duration: 120 Min

Mechanical Engineering


Date: 03rd APRIL 2024

Section:

Semester

: 11

	Note: 1. Question Paper consists of two parts (Part-A and Par 2. Answering the questions in Part-A is compulsory 3. All Questions from Part B are to be answered with in			
	PART-A	05*02 = 10 Mark		
Q. No	Question (s)	Marks	СО	BL
1 (a)	List out the characteristics of force	2 M	CO1	L1
(b)	Define coplanar force system with diagram	2 M	CO1	l.1
(c)	Define friction?	2 M	CO1	L1
(d)	List out the principles of equilibrium?	2 M	CO2	L1
(e)	Define Equilibrium?	2 M	CO2	L1
	PART-B	04*10 = 40 Marks		
Q. No	Question (s)	Marks	СО	BL
2.	illustrate the force system with neat sketches?	10M	CO1	L3
	(OR)	10101	COI	LO
3.	The force required to pull a body of weight 50N on a rough H.P. Det co-efficient of friction if the force is applied at angle of 15° with H.	ermine the P	CO1	L1
4.	Find the magnitude and direction for following diagram North 25 N West 45° 30° East South	10M	CO1	L1
5.	(OR) Define a) friction b) moment c) co-efficient friction d) angle of friction			
	a, motion b, moment c, co-emicient miction a) angle of friction	10M	CO1	L1
6.	Analyze the Lami's theorem with neat sketch?	10M	CO2	L4
	(OR)		L	
7.	Explain a) parallelogram law of forces b) Triangle law of forces c) polygon law of forces d) method of resolution	10M	CO2	L3

К	.S.R.M. COL	LEGE OF ENG	SINEERIN	IG, KADAPA	17 1 1 1 1 1	Dept:	EEE
		(Autonom	ous)	ADDII		Acaden	nic Year
B. 7	ech I Mid Te	erm Examina	tions of	APRIL March - 2024		2023	-2024
Course Code:	2302202	Course:		ELECTRIC	AL CIRCUIT	ANALYSIS-1	
Mid Term:	1	Marks:	50	Regulation:	R23UG	Duration: 1	20 Minutes
Semester	11	Section:	EEE (only Section)		Date: 03	-04-2024	

- 2. Answering the questions in Part-A is compulsory
- 3. All Questions from Part B are to be answered with internal choice among them.

PART-A

05*02 = 10 Marks

Q.No	Question(s)	Marks	СО	BL	
1(a)	Define Circuit and Network	2M	CO1	L1	
(b)	State and explain the Kirchoff's Voltage Law	2M	CO2	L2	
(c)	Write the classification of dependent source and their symbols	2M	CO2	L2	
(d)	Explain the Faradays Laws of electromagnetic induction	2M	CO2	L2	
(e)	Define the Self Induced EMF	2M	CO2	L2	

PART-B

04*10 = 40Marks

O NI-				
Q.No	Question(s)	Marks	co	BL
2	Write voltage and current relations for resistor, inductor and capacitor.	10M	CO1	L2
	(OR)			-
3	What is the voltage supplied by the voltage source? $I_1 = 2.00 \text{ A}$ $R_1 = 10.00 \Omega$ $R_2 = 10.00 \Omega$ $R_3 = 10.00 \Omega$	10M	CO2	L4
4	Derive the transformation from star to delta and delta to star.	10M	CO2	L3
	(OR)			
5	For the circuit shown in figure, find the power loss in the $1/2\Omega$ resistor and 1Ω resistor. Also find the value of the dependent source. $\frac{1\Omega}{2\Omega} = \frac{2}{1} \frac{1}{2} \frac{1}$	10M	CO4	L4

6	Define the following terms with their mathematical expressions and units (a)MMF (b)Magnetic flux density(c) Magnetic field intensity(d)Reluctance (e)Mutually induced EMF	10M	CO2	L1
	(OR)	Cary I	a bet	- 15
7	What is Dot Convection? Explain all the four cases of dotted ends with circuit diagram and equations?	10M	CO2	L2
8	(a) Analogy between Magnetic circuit and Electrical Circuit (b) Derive the coefficient of coupling	5M 5M	CO2	L2
	(OR)	7.		
9	Explain the Parallel Magnetic Circuits and Parallel Magnetic Circuits with air gap.	10M	CO5	L2

- R-Remember (L1)
- U-Understanding(L2)
- A-Apply(L3)
- Az- Analysing (L4)
- E-Evaluating (L5)
- C-Create(L6)

K.S.R.M.	CO	LLEGE	OF ENGI	NEE	RING, KAD	APA	Dept.:	ECE
		(A	utonomou	1S)	3		Acad	lemic Year
B. Tecl	h M	id Term	Examinat	ions o	of April – 202	24	202	3 - 2024
Course Code	:	2304204	Course:	Netv	work Analysis			121
Mid Term	:	I	Marks:	50	Regulation:	R23UG	Duration:	120 Minutes
Semester	:	II	Section:	Com	mon to All Res	nehes	Date: 03-04-2024	

Sections

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the questions in Part-A is compulsory

3. All Questions from Part B are to be answered with internal choice among them.

PART-A 05*02 = 10 MarksQuestion(s) Q.No Marks CO BL Write the Statements of Kirchhoff's laws. 1.(a) 2M CO₁ L1 What is time constant? Define time constant for a series RL circuit. (b) 2M CO₂ L1 What do you mean by an electric network and electric circuit? (c) 2M CO1 L1 Define Laplace transform and write its basic Equation. (d) 2M CO₂ L2 Write the current expression for RC circuit when it is exited by DC source 2M CO5 L5

		PART-B	04*10 =	40 Ma	rks
Q.No	Question(s)	• * * * * * * * * * * * * * * * * * * *	Marks	CO	BL
2	Find the branch cuthe KCL.	rrentsin the circuit shown below by employing	10M	C01	L5
	50 V —	₹ 10 Ω () 5A			
	de tracia de camento en el 2000 de desendo en contra esta contra en el				
		(OR)		<u> </u>	

3	Using Superposition theorem find the current flowing through 4Ω resistor in the following circuit.	10M	C01	L5
	10 Ω 4Ω			
	870 V → 300 Ω \$ 50 Ω \$ 10 A			

1		ity. Convert the following o	circuits in to its	(5+5) M	C01	L2
(a)	RI		A need but			
		Com ses	Latination of	1.29	4441	
11.17	VVV	.0000				
VA		Vi di cumino y	₹R2			/
1		$\mp c_1$	dien official au	isany J	uma-A	
	-1 0	oeth ando el A-14 ell al éco	teacy of pai	rasna j		
melli gaseme vide		heriowers and the same	· grows a mother	ECHA.		
1				1	1	
(6)	9 11					
(6).	2H	J.F.			704	
171	2H	THE STATE OF THE S	r 12 Te manuser	y all alla	7074	
171		1F		y gil ahar Na Terli	7 (8)	
(6).	2000-		3	v pil shir vit o Teri v ob Teri	7076 (18)	
			TH	v pil andi vit a teri v of turi sal veti	(8) (8) (4) (9)	
171	2000-) H	o gal anal vida ted v ob tuni ind perio	(K) (K) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	
171	2000-		TH	v pil sita v ob turi v ob turi pul verto	(8) (8) (8) (4) (6) (1) (6) (7)	
5V +	16			v pi ana v ob tan v ob tan pa ali mir	(8) (8) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	

betermine the voltage transfer function of the following network. 10	otowal i		RC circuits.	10M	CO2	L5
21011	11 50 WW	10 Ω	r function of the following netwo	rk. 10M	CO2	L5
\$ 200 V2		¥ 10 Ω	₹ 20 Ω V2			

	Analyze the DC response for RL circuits.	10M	CO2	L5
9	A series RL circuit has $R = 25 \Omega$ and $L = 5$ Henry. A dc voltage V of 100 V is applied to this circuit at $t = 0$ core. Find the series $t = 0$ and $t = 0$ and $t = 0$ are $t = 0$.			
	100 V is applied to this circuit at t = 0 secs. Find: (a) The equations for the charging current, and voltage across R & L (b) The current in the circuit 0.5 secs after the voltage is applied. (c) The time at which the drops across R and L are equal.	(4+3+ 3)M	CO2	L5

K.S.R.M. College of Engineering, Kadapa (Autonomous)

Dept.: CSE

Academic Year

2023 – 2024

B. Tech Mid Term Examinations of April - 2024

Mid Term : I Marks: 50 Regulation: R23UG Duration: 120 M	Subject Code	:	2305202	Subject:	Data	Structures		
Date: 3rd April 20		 	1	Marks:	50	Regulation:	R23UG	Duration: 120 Min
Semester : II Section: A,B & C Date: 3 April 20		-+:	11	Section:	A B S	\$ C		Date: 3rd April 2024

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the questions in Part-A is compulsory

3. All Questions from Part B are to be answered with internal choice among them.

PART-A

05*02 = 10 Marks

Q. No	Question (s)	Marks	со	BL
1 (a)	Define an array.	2 M	CO1	L1
(b)	Define abstract data type.	2 M	CO1	L1
(c)	What is Time and Space complexity.	2 M	CO1	L1
(d)	Define Linked list.	2 M	CO2	L1
(e)	Compare array and linked list.	2 M	CO2	L2

PART-B

Q. No	Question (s)	Marks	СО	BL
2.	Discuss linear and non-linear data structure with an example.	10M	CO1	L1
	(OR)			
3.	Write and explain insertion sort algorithm.	10M	CO1	L3
4.	Write binary search program and compare it with linear search.	10M	CO1	L3
	(OR)			
5.	Write and explain Bubble sort algorithm and also discuss its time complexity	10M	CO1	L3
6.	Discuss different types of linked list.	10M	CO2	L1
	(OR)			
7.	Write and discuss single linked list.	10M	CO2	L3
8.	Explain in detail about Double linked list.	10M	CO2	L1
	(OR)			
9.	Explain in detail about Circular linked list.	10M	CO2	L1

AIML Dept.: K.S.R.M. College of Engineering, Kadapa **Academic Year** (Autonomous) 2023 - 2024B. Tech Mid Term Examinations of April - 2024 Subject: **Data Structures Subject Code** 2305202 Duration: 120 Min Regulation: R23UG Marks: 50 Mid Term : Date: 3rd April- 2023 : 11 Section: Semester

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the questions in Part-A is compulsory
- 3. All Questions from Part B are to be answered with internal choice among them.

PART-A

05*02 = 10 Marks

Q. No	Question (s)	Marks	со	BL
1 (a)	Outline a linear and non-linear data structure with an example.	2 M	CO1	L1
(b)	Write any two applications of stack.	2 M	CO1	L2
(c)	Define Sorting.	2 M	CO1	L1
(d)	What are the operations of the stack?	2 M	CO2	L2
(e)	Draw the structure of Double Linked List.	2 M	CO2	L3

PART-B

Explain about double linked list with an example.

Define stack. Implement the operations of stack using arrays.

Explain about the properties and operations of a stack using an example.

7.

8.

9.

04*10 = 40 Marks

10M

10M

10M

CO2

CO2

CO₂

L3

L2

Q. No	Question (s)	Marks	СО	BL
2.	a. Explain ADT. List the Linear and Non-linear data structures with	5M	CO1	. L1
	example.			
	b. Write a program to implement Binary Search on sorted set of Integers.	5M	CO1	L1
	(OR)			
3.	How can you perform the selection sort and sort the following elements	10M	CO1	L1
	by using the selection sort technique 70, 30, 20, 50, 60, 10, 40.			
4.	Outline the steps to search a linked list with an example and relevant	5M	CO1	L1
	diagrams.			
	b. Outline the steps to delete from a linked list with an example and	5M	CO1	L1
	relevant diagrams.			
	(OR)			
5.	What is a linked list? Specify the difference between singly, doubly and	10M	CO1	L1
	circular linked lists.			
				,
6.	Explain the insertion operation in linked list. How nodes are inserted after	10M	CO2	L2
	a specified node.			
	(OR)			

(OR)

K.S.R.M. College of Engineering, Kadapa (Autonomous)

B. Tech Mid Term Examinations of April - 2024

Dept.: CE, MF., ECE								
Ac	ademic Year							
2	024 2025							

Subject Code	:	23CM205	Subject:	Basic	Civil and Mecha	nical Engin	eering
Mid Term	:	ı	Marks:	50	Regulation:	R23UG	Duration: 120 IVlin
Semester	:	11	Section:	A,B 8	& C		Date: 04-04-2()24

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the questions in Part-A is compulsory
- 3. All Questions from Part B are to be answered with internal choice among them.

PART-A

05*02 = 10 Marks

Q. No	Question (s)	Marks	СО	BL
1.(a)	List out the specializations in civil engineering?	2 M	CO1	L1
(b)	List out the materials used in construction?	2 M	CO1	L1
(c)	Define surveying.	2 M	CO2	L1
(d)	Define a composite material?	2 M	CO1.	L1
(e)	How do you define a metal?	2 M	CO1	L1

PART-B

Q. No	Question (s)	Marks	CO	BL
2.	Write short note on any three specializations of civil engineering?	10M	CO1	L1
	(OR)		L	
3.	What are the factors to be consider for building planning?	10M	CO1	L2
4.	What is the role of civil engineering in the society?	10M	CO1	L2
	(OR)		ii	
5.	Write the importance and objectives of surveying?	10M	CO2	L1
6.	Industries play a vital role in Indian Economy-Justify your answer?	10M	CO1	L2
	(OR)		<u> </u>	
7.	Highlight the importance of Technology in (a) Energy sector (b) Automotive sector?	10M	CO1	L2
8.	Explain about the classification of metals with Advantages and Applications?	10M	CO1	1.2
	(OR)			
9.	Describe how smart materials are utilized in Modern technology?	10M	CO1	L2

			- 11	. f Frain	paring	Kadapa			Dept.:	Academi	SE,AI&N	/IL
	K.S.R	.N	I. College	of Engin	eering	, Kadapa						
	f a		(A	utonomou	S)	nnu - 2024	4			2023 -	2024	
	B. Tech	n N	1id Term E	xaminatio	ns of A	PRIL - 2024	-					
bject C	Code : 2322204 Subject: Engineering Ny									on: 120 N	Vin	
id Tern	ferm : I Warks. So Dat								Date: 4	4th APRIL	2024	
meste	<u> </u>	:	11	section.	rts (Part	-A and Part-	-B))				
ote: 1.	Question	ı Pa	aper consist	ns in Part-A	is comp	oulsory				thom		
2.	Answeri	ng	ns from Pa	rt B are to b	e answe	red with into	ern	ial choi	ce among	them.		
3.	All Ques	ilo	IIS II OILI Z						05*0	2 = 10 M	Marks	
				P	ART-A						со	BL
				Que	stion (s)					Marks		L1
Q. No			c of li							2 M	CO1	L2
(a)	Define in	teri	ference of li	terference at	nd diffrac	ction.				2 M	CO1	
(b)	Different	iate	between in	Continu	ild diffia					2 M	CO1	L1
(c)	What is r	nea	int by doubl	e refraction?						2 M	CO2	L1
(d)	What are	lat	tice parame	ters'?	. 1:	~ (010) and (111	1).		2 M	CO2	L2
(e)	Draw the	cr	ystal planes	having Mill	er indice	s (010) and (111		04*1	0 = 40	Marks	
				P	ART-B					Marks		BL
O NT	Γ	S. S		Que	estion (s)						CO1	L3
Q. No		:	ogram discu	1 1	of thin	films and the	co	nditions	for	10M	COI	L
2.	With ray	tix	e and Destri	active Interfe	erence in	the case of r	refl	ected sy	stem.			
	Construc	, LI V	c and b com							.1		
	.L					(OR)		- t-ug 0:	F bright	7M	COI	L2
3.	a) What	are	e Newton's	rings? Obtai	n the exp	pression for d	nan	neters of	Oligin	12.2	200000	
Э.	and dar	k fr	inges.		,	17th - 17th -	rine	re are O	6 cm and			
,	b).In No	ewt	on rings exp	eriment dian	meters of	17 th and 7 th a	o 12	$25 \mathrm{cm} \cdot \mathrm{f}$	ind the	3M	CO1	L2
	0.3 cm	res	pectively. If	radius of cu	irvature c	of used lens is	5 12	25 0111, 1				
	wavele	ngt	h of inciden	t light.								
							and	lary may	rima for	10M	CO1	L4
4.	Derive	the	expression	for the princ	cipal max	cima and seco	OHO	iary mar				
••	Fraunh	ofe	er diffraction	due to sing	le slit.	(OR)						
										10N	I CO1	L
5.	Descri	be 1	the construc	tion and wor	rking of a	Nicol prism	1.		SAVERS			
												1
					d their D	ravais lattices	s W	ith suita	ble	10N	A CO	2 L.
6	Discus	SS S	seven crysta	l systems and	a meir b	iavais iattion		ner #8000 (CHC)				

(OR)

(OR)

Show that FCC is most closely packed than SC and BCC.

Calculate the interplanar spacing for (212) plane.

crystal structure with suitable diagram.

a).State Bragg's law. Explain the working of Bragg's X-ray spectrometer.

b).Copper has BCC structure and the atomic constant is 0.3615 nm.

Describe the Powder diffraction method for determining lattice constant of a

CO2

CO₂

CO₂

CO₂

10M

8M

2M

10M

L3

L2

L2

L5

examples.

7.

8.

9.

Dept.: Common to EEE K.S.R.M. College of Engineering, Kadapa (Autonomous) Academic Year **B.** Tech Mid Term Examinations of April − 2024 2023 - 2024 2323202 Subject: Chemistry Subject Code R23UG Duration: 120 Min Regulation: Marks: 50 : 1 Mid Term Date: 04th April 2024 : 11 Section: Semeste r

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the questions in Part-A is compulsory

3. All Questions from Part B are to be answered with internal choice among them.

PART-A

05*02 = 10 Marks

Q. No	Question (s)	Marks	co	BL
1 (a)	Write the LCAO method.	2 M	CO1	L1
(b)	Write short notes on schrodinger wave equation	2 M	CO1	L1
(c)	Define Bond Order and calculate bond order for N ₂ molecule	2 M	CO1	L1
(d)	List the two applications super capacitors.	2 M	CO2	L1
(e)	classify the nanomaterials.	2 M	CO2	L2

PART-B

Q. No	Question (s)	Marks	co	BL
2.	Derive Schrodinger wave equation for Particle in One Dimensional box	10M	CO1	L4
	(OR)			
3.	Explain molecular orbital diagram for Oxygen molecule and calculate the bond order.	10M	CO1	L5
4.	Explain the π-molecular orbital diagrams of benzene & butadiene	10M	CO1	L4
	(OR)			
5.	Write the plancks quantum theory and debroglie concept.	10M	CO1	L4
6.	Explain different types of Semiconductors and its application.	10M	CO2	L5
	(OR)			
7.	Describe types & applications of Super conductors.	10M	CO2	L4
8.	Explain properties & applications of nanomaterials.	10M	CO2	L5
	(OR)			
9.	Discuss the properties and applications of fullerene and graphene nanoparticles.	10 M	CO2	L4

K.S.R.M. College of Engineering, Kadapa (Autonomous)

B. Tech Mid Term Examinations of April - 2024

Dept.	Common to All	
 :	Branches(CE,ME,	
	ECE)	
A	cademic Year	
	2023 - 2024	-

Subject Code	:	2005207	Subject:	Intro	duction to Prog	ramming	
Mid Term	:	ı	Marks:	50	Regulation:	R23UG	Duration: 120 Min
Semester	:	11	Section:	-		1	Date: 06 th April - 2024

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the questions in Part-A is compulsory
- 3. All Questions from Part B are to be answered with internal choice among them.

	PART-A	05*02 = 10	Marks	•
Q. No	Question (s)	Marks	со	BL
1 (a)	Define Variables, and Constants? What are the rules?	2 M	CO1	L1
(b)	What is Type Conversion in C programming?	2 M	CO1	L2
(c)	Write a c program to find if a given number is even or odd?	2 M	СОЗ	L1
(d)	Write a c program to find the given year is leap year or not?	2 M	СОЗ	L2
(e)	Differences between while and do while in C?	2 M	CO2	L1
(0)	billetenees between while and do while in c.			
	PART-B	04*10 = 40	Marks	
Q. No	Question (s)	Marks	co	BL
2.	A) What is SDLC and draw the neat Diagram.	10M	CO1	L1
	B) How to Create, Saving, Compiling and Executing a C program?			
	(OR)			
3.	What is a computer? Explain different parts of Computer with a neat Block	10M	CO1	L1
	Diagram?	1004	CO1	1.1
4.	Explain about Algorithms, flowchart and pseudo code with examples? (OR)	10M	CO1	L1
5.	Define Data type? Explain different types of data types in c language?	10M	CO1	L1
6.	Define the Operator and Explain about various operators available in C	10M	CO2	L2
	Programming.			
	(OR)			
7.	Define loop? Explain different types of loop statements with syntax and	10M	CO2	L3
	examples?	1014	603	
8.	Explain different conditional control structures in c? Also write each	10M	CO2	L2
	syntax and example. (OR)			
9.	Explain Below	10M	CO1	L3
٥.	A) Top-down approach			
	B) Bottom-up approach			

	K.	S.R.M. Colle	ge of Engine	ering, I	Kadapa		Dept.:	EEE	
(Autonomous)						Academic Year			
F	3. Tecl	h Mid Term	Examination	s of AF	PRIL - 2024		2023 - 2024		
Subject Code	:	23EE106	Subject:	Basic	c Electrical & El	ectronics E	ngineering	a Patebil	
Mid Term	16 1:	I Valo	Marks:	50	Regulation:	R23UG	Duration: 120 Min		
Semester	1.	II	Section:	-			Date: 06/04	1/2024	

2. Answering the questions in Part-A is compulsory

Define Amplifier.

3. All Questions from Part B are to be answered with internal choice among them.

PART-A

Q. No	Question (s)	Marks	CO	BL
1 (a)	Explain the ohm's law.	2 M	CO1	L2
(b)	Define Form Factor and Peak Factor.	2 M	CO1	L2
(c)	List the applications of diode.	2 M	CO1	L1
(d)	What is rectifier and classify it.	2 M	CO2	L2

	DADED 0441	0 = 40 Ma	wlee	
	PART-B 04*1	0 = 40 Ma	.rns	
Q. No	Question (s)	Marks	CO	BL
2.	State and Explain Kirchhoff's Laws.	10M	CO1	L2
	(OR)			
3.	Determine the current i and across 8Ω resistor using Superposition theorem in the network shown below.	10M	CO1	L4
	\$80 3V F			
4.a	Define Average Value. Also derive the expression for RMS value of Sinusoidal Voltage Wave form.	5M	CO2	L3
4.b	Determine the equivalent resistance for the following figure?.	5M	CO2	L3
	$ \begin{array}{c c} 6\Omega & 4\Omega \\ \hline 8\Omega & 8\Omega \end{array} $	-		
	(OR)			
5.a	Draw the phasor diagram for the pure inductive coil when it is excited by an AC supply with derivation	5M	CO2	L3
5.b	Find the current flowing through and voltage across 40Ω in the circuit using mesh analysis.	5M	CO2	L3
	$30V \stackrel{\leftarrow}{+} $ $10\Omega \qquad v > 40\Omega $ $- \downarrow i$			

6.	Explain briefly about V-I characteristics of P-N junction Diode?	10M	CO2	L2
19	(OR) (establishment)			
7.	Draw the input and output characteristics of CE configuration & Explain in detail using circuit diagram?	10M	CO2	L3
8.	Explain in detail about block diagram description of a DC power supply?	10M	CO1	L2
	(OR)		7028	9 .73
9.	With neat block diagram explain full wave bridge rectifier and it's working.	10M	CO2	L3

K.S.R.M. College of Engineering, Kadapa

(Autonomous)

B. Tech Mid Term Examinations of APRIL – 2024

Dept.: CSE
Academic Year
2023 – 2024

Subject Code	:	23EE206	Subject:	Basic	c Electrical & Ele	ctronics Eng	gineering
Mid Term	:	I	Marks:	50	Regulation:	R23UG	Duration: 120 Min
Semester	:	II	Section:	A			Date: 6/04/2024

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the questions in Part-A is compulsory

3. All Questions from Part B are to be answered with internal choice among them. PART-A 05*02 = 10 Marks

Q. No	Question (s)	Marks	CO	BL
1 (a)	Write the expression for equivalent resistance when two resistances R1 and R2 are connected in (i) Series (ii) Parallel	2 M	CO1	L2
(b)	Define Form Factor and Peak Factor.	2 M	CO1	L2
(c)	List the applications of diode.	2 M	CO1	L1
(d)	What is rectifier and classify it.	2 M	CO2	L2
(e)	Define Amplifier.	2 M	CO1	L1

PART-B

Q. No	Question (s)	Marks	CO	BL
2.	State and Explain Kirchhoff's laws with suitable examples	10M	CO1	L2
	(OR)	<u> </u>		
3.	determine the current i_1 and voltage across 6Ω resistor using Superposition theorem in the network shown below $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	10M	CO1	L4
	$4 \times 2 \qquad 6 \Omega \geqslant f_1 \qquad 2 $			
4.a	Define Average Value. Also derive the expression for Average value of Sinusoidal Voltage Wave form.	5M	CO2	L3
4.b	A resistance of 20Ω and an inductance of 0.2H are connected in series and are fed by a 230V, 50Hz, 1- phase, AC supply. Find (i) Inductance reactance (XL) (ii) impedance (Z) (iii) current supplied by the source (I) (iv) Active power drawn by the load (P).	5M	CO2	L4
	(OR)			
5.a	Define R.M.S. Value. Also derive an expression for RMS value of sine wave form?	5M	CO2	L3
5.b	Analyz the circuit with pure resistance when excited with a sinusoidal voltage source.	5M	CO2	L3
6.	Explain briefly about V-I characteristics of P-N junction Diode?	10M	CO2	L2
	(OR)	-		
7.	Draw the input and output characteristics of CE configuration & Explain in detail using circuit diagram?	10M	CO2	L3
8.	Explain in detail about block diagram description of a DC power supply?	10M	CO1	L2
	(OR)			
.9.	With neat block diagram explain full wave bridge rectifier and it's working.	10M	CO2	L3

K.S.R.M. College of Engineering, Kadapa Dept.: CSE-B Academic Year (Autonomous) 2023 - 2024 B. Tech Mid Term Examinations of APRIL - 2024 Subject Code : 23EE106 **Basic Electrical & Electronics Engineering** Subject: Mid Term : Marks: 50 Regulation: **R23UG Duration: 120 Min**

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

B

2. Answering the questions in Part-A is compulsory

Section:

11

:

Semester

3. All Questions from Part B are to be answered with internal choice among them.

PART-A 05*02 = 10 Marks

Date:0 6/04/2024

Q. No	Question (s)	Marks	со	BL
1 (a)	Explain the ohm's law.	2 M	CO1	L2
(b)	An electric kettle takes a current of 12.5 A at 240 volts. What is the resistance of heating element.	2 M	CO1	L2
(c)	List the applications of diode.	2 M	CO1	L1
(d)	What is rectifier and classify it.	2 M	CO2	L2
(e)	Define Amplifier.	2 M	CO1	L1

PART-B 04*10 = 40 MarksQ. No Question (s) Marks CO BL 2. State and Explain Kirchhoff's Laws. 10M CO₁ L2 (OR) 3. Determine the current i, and voltage across 6Ω resistor using Superposition 10M CO₁ L4 theorem in the network shown below. 3Ω 6 n ≥ 11 10 V Define Average Value. Also derive the expression for Average value of 4.a 5M CO₂ L3 Sinusoidal Voltage Wave form. 4.b Determine the equivalent resistance between A&B to the following figure?. 5M CO₂ L3 5Ω Ω 8 4Ω (OR) 5.a Find the Currents in each branch using node analysis. 5M CO₂ L3

	$\begin{array}{c c} & & & & & & & & & & & & & \\ & & & & & &$			
5.b	Find the currents and the voltages in the by using mesh analysis.	5M	CO2	L3
	² Ω			
	30 V _x + 4 Ω			
,				
6.	Explain briefly about V-I characteristics of P-N junction Diode?	10M	CO2	L2
	(OR)		1002	
7.	Draw the input and output characteristics of CE configuration & Explain in detail using circuit diagram?	10M	CO2	L3
8.	Explain in detail about block diagram description of a DC power supply?	10M	CO1	L2
	(OR)		1 1 1 1 1 1 1	
9.	With neat block diagram explain full wave bridge rectifier and it's working.	10M	CO2	L3

Dept.: K.S.R.M. College of Engineering, Kadapa CSE - C **Academic Year** (Autonomous) 2023 - 2024B. Tech Mid Term Examinations of APRIL - 2024 **Subject Code** 23EE106 Subject: **Basic Electrical & Electronics Engineering** Mid Term : 1 Marks: 50 Regulation: R23UG **Duration: 120 Min** 11 Semester : Section: Date:0 6/04/2024

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the questions in Part-A is compulsory
- 3. All Questions from Part B are to be answered with internal choice among them.

 PART-A

 05*02 = 10 Marks

Q. No	Question (s)	Marks	СО	BL
1 (a)	Explain the ohm's law.	2 M	CO1	L2
(b)	Define Form Factor and Peak Factor.	2 M	CO1	L2
(c)	List the applications of diode.	2 M	CO1	L1
(d)	What is rectifier and classify it.	2 M	CO2	L2
(e)	Define Amplifier.	2 M	CO1	L1

PART-B 04*10 = 40 MarksQ. No Question (s) Marks CO BL 2. State and Explain Kirchhoff's Laws. 10M CO₁ L2 (OR) Determine the current i₁ and voltage across 6Ω resistor using Superposition 3. CO₁ 1.4 10M theorem in the network shown below. 3Ω $6\Omega \ge i_1$ 10 V 4.a Define Average Value. Also derive the expression for Average value of **5M** CO₂ L3 Sinusoidal Voltage Wave form. Determine the equivalent resistance between A&B to the following figure?. 4.b 5M CO₂ L3 5Ω Ω 8 4Ω (OR) Define R.M.S. Value. Also derive an expression for RMS value of sine wave 5.a 5M CO₂ L3 5.b Find the currents and the voltages in the by using mesh analysis. 5M CO₂ L3

	30 V. (+) 4 Ω S			
6.	Explain briefly about V-I characteristics of P-N junction Diode?	10M	CO2	L2
	(OR)			
7.	Draw the input and output characteristics of CE configuration & Explain in detail using circuit diagram?	10M	CO2	L3
8.	Explain in detail about block diagram description of a DC power supply?	10M	C01	L2
	(OR)	26.77	1.37	
9.	With neat block diagram explain full wave bridge rectifier and it's working.	10M	CO2	L3

K.S.R.M. College of Engineering, Kadapa (Autonomous)

Dept.: AI & ML **Academic Year** 2023 - 2024

B. Tech Mid Ter	m Examinations of APRIL - 2024
	2024

Subject Code	<u> </u> :	23EE106	Subject:	Basic	Electrical & Elec	tronics Eng	ineering		
Mid Term	:		Marks:	50	Regulation:	R23UG	Duration: 120 Min		
Semester	:	: II Section:		1.					
Notes 1 O			0000011.				Date:0 6/04/2024		

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the questions in Part-A is compulsory

3. All Questions from Part B are to be answered with internal choice among them. PART-A 05*02 = 10 Marks

Q. No				
The I had a	Question (s)	Marks	со	BL
1 (a) Expla	in the ohm's law.			DL
	e Form Factor and Peak Factor.	2 M	CO1	L2
	ne applications of diode.	2 M	CO1	L2
		2 M	CO1	L1
	is rectifier and classify it.	2 M	CO2	L2
(e) Define	Amplifier.			
		2 M	CO1	L1

	PART-B	1410 4	1	
Q. No)4*10 = 40) Mark	S
2.	Question (s)	Marks	CO	В
	State and Explain Kirchhoff's Laws.	10M	COI	T.
	(OR)	TOIVE	COI	L
3.	Determine the current i, and voltage across 6Ω resistor using Superposition theorem in the network shown below.	1 407.5		
	theorem in the network shown below.	10M	C01	L
	$\frac{4\Omega}{\sqrt{\sqrt{2}}}$			
	$4 \text{ V} \stackrel{+}{=} 6 \Omega \lessgtr i_1 \qquad \stackrel{+}{=} 10 \text{ V}$			
4.a	Define Average V. I			
	Define Average Value. Also derive the expression for Average value of	5M	CO ₂	L3
4.b	The stage wave lorin.		C02	L3
	Determine the equivalent resistance between A&B to the following figure?.	5M	CO ₂	L3
	$\lambda^2 \Omega_{\lambda}$, $\lambda^2 \Omega_{\lambda}$, $\lambda^2 \Omega_{\lambda}$	SIVE	COZ	כעו
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	A TTT VVV			
	8 60 >8			
	$\Omega > \qquad \qquad < \Omega$			
			1	
1	$-\mathbf{B} - \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge $		- 1	
			İ	
	5 Ω 4 Ω 8 Ω			
i.a	(OR)			
·a	Define R.M.S. Value. Also derive an expression for RMS value of sine wave form?	700		
		5M	CO2	L3
.b	Find the currents and the voltages in the by using mesh analysis.	+		
	andlysis.	5M	CO2	L3
1	PIO			
1		1	1	

	30 V _s + 4 Ω		500 500	
6.	Explain briefly about V-I characteristics of P-N junction Diode?	10M	CO2	L2
	(OR)			
7.	Draw the input and output characteristics of CE configuration & Explain in detail using circuit diagram?	10M	CO2	L3
8.	Explain in detail about block diagram description of a DC power supply?	10M	CO1	L2
	(OR)	-		
9.	With neat block diagram explain full wave bridge rectifier and it's working.	10M	CO2	L3

k	K.S.R.M.	C	ollege of	Enginee	ring,(A	utonomous)I	Kadapa	Dept.:	M.I	E
•					A	April – 2024	-	Acado	emic Yea	ır
								2023	3 - 2024	
Subjec	t Code	:	2303208	Subject :	Enginee	ring Graphics				
Mid To	Term : I Marks: 30 Regulation: R23UG		Duration	120 M	in.					
Semest	Common for CSE A B C&		Date: 08/04/24 FN							
			uestions Ca						*****************	
						ong Six Questio				
Q.No	3. All Questions are to be answered with internal choice among the Question (s)						7.60	73.7		
Q.1.10	<u> </u>				. ,			Marks	СО	BL
1	Construct a Hyperbola with the distance of the focus from the directrix as					10.74				
*	50mm and eccentricity as 3/2. Also draw normal and tangent to the curve at a point 40 mm from the directrix.					t 10 M	CO1	L6		
	j a point 40	mn	1 from the di	rectrix.	(OD	`				
	γ				(OR					
•						d centimetres a	nd to read up	)		
2.	to 1m. Sho	w a	length of 7.	.6 dm on it.				10M	CO1	L6
	Generate a	an l	Epicycloid (	of a circle	of 40 m	m diameter. wi	nich rolls on			T
3.	Generate an Epicycloid of a circle of 40 mm diameter, which rolls on another circle of 120mm diameter for one revolution clockwise. Draw tangent to the curve at a point on it, 90 mm from the curve.					CO1	L3			
					10141	COI	L			
	L				(OI					
	Draw the i	nvo	lute of a cir	cle of 40m		r. Also draw a	tangent and a			T
4.								10M	COI	1 7

5a.	Draw the projections of the following points, and find its quadrants.  A- 25mm below H.P and 40mm infront of V.P  B- 45mm below H.P and 20mm behind V.P  C- 30mm above H.P and 25mm behind V.P  D- 15mm above H.P and 35mm infront of V.P	5M	GOA	
5b.	A line AB of 50mm long and inclined at 45° to V.P and parallel to H.P. The line is 15 above H.P and one its end A is and 20 in front V.P. Draw the projections of the line.	5M	CO2	L2

10M

CO1

L2

normal to the curve at a point 90 mm from the centre of the circle.

4.

## (OR)

6	A line of AB of 100mm length is inclined at an angle of 30° to H.P and 45° to V.P.The point A is 15 above H.P and 20mm infront of V.P. Draw the projections of line.		
		CO2	L2

#### K.S.R.M. College of Engineering, Kadapa Dept.: EEE, CSE(RA) Academic Year (Autonomous) B. Tech Mid Term Examinations of April – 2024 2023 - 2024 Subject Code 23CM205 Subject: BCME Mid Term Marks: 50 Regulation: R23UG Duration: 120 Min Semester 11 Section: Date: 10-04-2024

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the questions in Part-A is compulsory
- 3. All Questions from Part B are to be answered with internal choice among them.

#### **PART-A**

#### 05*02 = 10 Marks

Q. No	Question (s)	Marks	СО	BL
1 (a)	Define the terms engineering & Civil Engineering?	2 M	СО	L1
(b)	How do you define aggregate crushing and aggregate impact?	2 M	СО	L1
(c)	What are the different materials used in the construction industry?	2 M ⁻	СО	L1
(d)	Define smart material?	2 M	СО	L2
(e)	How do you define a metal?	2 M	СО	L1

### PART-B

Q. No	Question (s)	Marks	СО	BL
2.	Explain the different roles of civil engineers in society and describe the scope of transportation Engineering?		со	L2
·	(OR)	r		
3.	What are the steps involved in building construction and building planning?	10M	СО	L1
_	YYH			
4.	What is cement concrete, explain the different tests on cement concrete?	10M	СО	L1
47.55	(OR)			
5.	Define surveying? What are the objectives and principles of surveying?	10M	со	L1
6.	What is the role of Industries in Indian Economy?	10M	CO1	L1
	(OR)		001	
7.	Highlight the importance of Technology in (a) Automobile (b) Marine sector?	10M	CO1	L2
8.	Explain about the classification of non-ferrous metals?	10M	CO1	L2
	(OR)	TOIVI	COI	LZ
9.	What do you know about smart materials?	10M	CO1	L2