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Introduction to Electromagnetism
• Electromagnetism is a 

branch of Physics that 
describes the interactions 
involving electric charge. 

• This includes the 
phenomena of Electricity, 
Magnetism, 
Electromagnetic induction 
(Electric generators) and 
Electromagnetic radiation.
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Electrostatics is the branch of Physics, which deals 

with the behavior of stationary electric charges.

Charges are existing in two different kinds called 

positive and negative, these charges when in 

combination add algebraically i.e. the charge is a 

scalar quantity always quantized in integral multiples 

of electronic charge.

Charge is a fundamental property of the ultimate 

particles making up matter, the total charge of a 

closed system cannot change i.e. net charge is 

conserved in an isolated system

Electrostatics
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Coulomb’s Inverse Square Law
Coulomb’s inverse square law gives the force between the two 

charges. According to this law, the force (F) between two 

electrostatic point charges (q1 and q2) is proportional to the 

product of the charges and inversely proportional to the 

square of the distance (r) separating the charges.

F  q1 q2

(or)

Basic definitions

q1
q2

medium r
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where K is proportionality constant which depends on 

the nature of the medium. 

This force acts along the line joining the charges. For 

a dielectric medium of relative permittivity r ,the value 

of K is given by,
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where  = permittivity of the medium.
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Electric charges affect the space around them.

 The space around the charge within which its effect is felt 

or experienced is called Electric field. 

Electric field Intensity (or) Strength of the Electric field, 

due to a point charge qa at a given point is defined as the 

force per unit charge exerted on a test charge qb placed at 

that point in the field.
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Electric field
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The Electric potential is defined as the amount of work 

done in moving unit positive charge from infinity to the 

given point of the field of the given charge against the 

electrical force.

 Unit: volt (or) joule / coulomb
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 An Electric field may be described in terms of lines of force 

in much the same way as a magnetic field.

Properties of electric lines of force

1. Every Lines of force originates from a positive charge and  

terminates on negative charge.

2. Lines of force never intersect.

3. The tangent to Lines of force at any point gives the 

direction of the electric field E at that  point.

4. The number of Lines of force per unit area at right angles  

to the lines is proportional to the magnitude of E.

5. Each unit positive charge gives rise to  lines of force in  

free space.

Electric lines of force
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Representation of electric lines of force for 

Isolated positive and negative charges.

+q -q
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The Electric flux is defined as the number of 

lines of force that pass through a surface placed 

in the electric field.

The Electric flux (dφ) through elementary area 

ds is defined as the product of the area and the 

component of electric field strength normal to 

the area.

Electric flux
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Electric flux expression

E

ds
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Flux of the 

electric field

dφ =E ds cos θ= (E cos θ) . ds

= (Component of E along the direction of 

the normal  area)

The flux over the entire surface = φ =

Unit: Nm2 C  1

The electric flux normal to the 

area ds = dφ = E ds


S

d

ds.cosE

S



.

12/17/2016



G NAGENDRA PRASAD 13

 This Law relates the flux through any closed surface 

and the net charge enclosed within the surface. 

 The Electric flux (φ) through a closed surface is equal 

to the 1/0 times the net charge q enclosed by the 

surface.

q











0
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 cos

0

dsE
q

(or)

Gauss theorem (or) Gauss law
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Electric flux density (or)

Electric displacement vector (D)

 It is defined as the number of Electric Lines of force passing 
normally through an unit area of cross section in the field. It is 
given by,
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A
D




Unit : Coulomb / m2
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Permittivity is defined as the ratio of electric displacement 

vector (D) in a dielectric medium to the applied electric field 

strength (E).

 Mathematically it is given by,

E

D


Unit: Farad /metre

 =  0  r

 0 = permittivity of free space or vacuum

 r = permittivity or dielectric constant of the medium    

Permittivity ()
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 Magnetostatics deals with the behaviour of stationary 

Magnetic fields.

 Oersterd and Ampere proved experimentally that the 

current carrying conductor produces a magnetic field 

around it. 

 The origin of Magnetism is linked with current and 

magnetic quantities are measured in terms of current. 

Magnetic dipole

 Any two opposite magnetic poles separated by a 

distance d constitute a magnetic dipole.

Magnetostatics
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 If m is the magnetic pole strength and l is the length of the 

magnet, then its dipole moment is given by,

m = m x l

 If  an Electric current of  i amperes flows through a circular 

wire of one turn having an area of cross section a m2, then 

the  magnetic moment is

m = i x a

Unit:  ampere (metre)2

Magnetic moment

A

m

i

Magnetic dipole moment (m)
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 It is defined as the total number of magnetic lines of force 

passing perpendicular through a given area.

Unit: weber.

 It can also be defined as the total number of lines of force 

emanating from North Pole.

Magnetic flux density (or) Magnetic induction (B)

 It is defined as the number of Magnetic Lines of force 

passing through an unit area of cross section. And it is given 

by,

Tesla(or)weber/m
AreaUnit

FluxMagnetic 2

A

φ
B 

Magnetic flux (φ)

Pole strength

experiencedForce


m

F
B
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 Magnetic field intensity or magnetic field strength at any 

point in a magnetic field is equal to 1 / μ times the force 

per pole strength at that point

metreturnsampere
B

m

F
Hei /

1
..












 = permeability of the medium.

Magnetic field strength     (or)

Magnetic field intensity (H)
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Magnetization (or)

Intensity of Magnetization (M)

 Intensity of Magnetization measures the magnetization of the 
magnetized specimen. 

 Intensity of magnetization (M) is defined as the Magnetic 
moment per unit Volume. It is expressed in ampere/metre.
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Magnetic susceptibility ()

 It is the measure of the ease with which the specimen can be 
magnetized by the magnetizing force.

 It is defined as the ratio of magnetization produced in a 
sample to the magnetic field intensity. i.e. magnetization per 
unit field intensity

unit)(no
H

M
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It is the measure of degree at which the lines of force 

can penetrate through the material.

 It is defined as the ratio of magnetic flux density in the 

sample to the applied magnetic field intensity.

H

B
ei r   0..

  0 = permeability of free space = 4  10 – 7  H m – 1

  r = relative permeability of the medium

Magnetic permeability ()

12/17/2016



G NAGENDRA PRASAD 23

 It is the ratio of permeability of the medium to the 

permeability of free space.

 r = 

0

 (No unit)

Relation between r and 

Total flux density (B) in a solid  in the presence of magnetic 

field can be given as  B = 0 (H+M)

Then r can be related to  as   1r

Relative permeability (r) 
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Bohr Magneton (B)

Bohr Magneton is the Magnetic moment produced by one 

unpaired electron in an atom. 

It is the fundamental quantum of magnetic moment.

m

ehh

m

e

 42
.

2
1 Bohr Magneton

1B = 9.27 x 1024 ampere metre 2



Current density (J)

 Current density is defined as the ratio of the current to the 
surface area whose plane is normal to the direction of charge 
motion.

 The current density is given by,
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ds

dI
J

The net current flowing through the conductor  for the 

entire surface is


S

J.dsI
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 The current density due to the conduction electrons in a 

conductor is known as the conduction current density.

 By ohms law, the potential difference across a conductor         

having resistance R and current I is,

V = IR (1)

For a length l and potential difference V,

V=El (2)

where E = electric field intensity.

Conduction Current Density ( J1)
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Expression for J1

EJ 1

G NAGENDRA PRASAD 27

From equations V =  IR   and    V=   El

IR = El (3)
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Using  (4)  in  (3)
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or
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Displacement Current Density )( 2J

In a capacitor, the current is given by,

dt

dV
.C

dt

)CV(d

dt

dQ
Ic 

In a parallel plate capacitor, the capacitance is given by,

C = 
d

A

(1)

(2)

Using equation (2) in (1)

dt

dV

dA

I
or

dt

dV

d

A C .)(.









CI
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J2 = Displacement  

current density =
dt

Ed

dt

dE

d

V

dt

d )(
 

















dt

Dd
J 2

The net current density =  J = J1 + J2

dt

Dd
EJ 

= Electric Displacement vector]ED [since
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UNIT 3
EM WAVE CHARACTERISTICS
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In general, waves are means of transporting energy or information.
A wave is a function of both space and time.
In this chapter, our major goal is to solve Maxwell's equations and derive EM wave motion in 
the following media:

where ω is the angular frequency of the wave. Case 3, for lossy dielectrics, is the most
general case and will be considered first. Once this general case is solved, we simply
derive other cases (1,2, and 4) from it as special cases by changing the values of σ, ε,
and μ. However, before we consider wave motion in those different media, it is
appropriate that we study the characteristics of waves in general. This is important for
proper understanding of EM waves.

Wave motion occurs when a disturbance at point A, at time t0, is related to what happens 
at point B, at time t > t0. A wave equation is a partial differential equation of the second 
order. In one dimension, a scalar wave equation takes the form of

----(1) where u is the wave velocity.

Waves in General
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in which the medium is source free (ρv = 0, J = 0). It can be solved by following procedure, 

----(2a) ----(2b) or ----(2c)

If we particularly assume harmonic (or sinusoidal) time dependence ejωt, eq. (1) becomes

Where β= ω/u and Es is the phasor form of E. The solutions to eq. (3) are

----(3)

----(4b)----(4a) ----(4c)and

where A and B are real constants.
For the moment, let us consider the solution in eq. (4a). Taking the imaginary part
of this equation, we have

This is a sine wave chosen for simplicity; we have taken the real part of eq. (4a). 
Note the following characteristics of the wave in eq. (5):
1. It is time harmonic because we assumed time dependence ejωt to arrive at eq. (5).
2. A is called the amplitude of the wave and has the same units as E.
3. (ωt - βz) is the phase (in radians) of the wave; it depends on time t and space variable z.
4. ω is the angular frequency (in radians/second); β is the phase constant or wave number        
(in radians/meter).

----(5)
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Due to the variation of E with both time t and space
variable z, we may plot E as a function of t by keeping
z constant and vice versa.
The plots of E(z, t = constant) and E(t, z = constant) are
shown in Figure 1(a) and (b), respectively.
From Figure 1(a), we observe that the wave takes
distance λ to repeat itself and hence λ is called the
wavelength (in meters).
From Figure 1(b), the wave takes time T to repeat
itself; consequently T is known as the period (in
seconds). Since it takes time T for the wave to travel
distance λ at the speed u, we expect

But T = l/f, where/is the frequency (the number of cycles per second) of the wave in
Hertz (Hz). Hence, ----(6b)

----(6a)

Because of this fixed relationship between wavelength and frequency, one can identify the
position of a radio station within its band by either the frequency or the wavelength.
Usually the frequency is preferred. Also, because

----(7a)

----(7b)
and ----(7c)

Plot of E(z, t) =A sin (ωt-βz) (a) with constant t, (b) with constant z. 

From Eq (6) & (7) We have

----(8)
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Equation (8) shows that for every wavelength of distance traveled, a wave undergoes a
phase change of 2π radians.

We will now show that the wave represented by eq. (5) is traveling with a velocity
u in the +z direction. To do this, we consider a fixed point P on the wave. We sketch
eq. (5) at times t = 0, t/4, and t/2 as in Figure 2. From the figure, it is evident that
as the wave advances with time, point P moves along +z direction. Point P is a point of
constant phase, therefore

and ----(9)

Plot of E(z, t) = A sin(ωt - βz) at time (a) t = 0, (b) t = T/4, 
(c) t = t/2; P  moves along +z direction with velocity u.

In summary, we note the following:
1. A wave is a function of both time and space.
2. Though time t=0 is arbitrarily selected as a
reference for the wave, a wave is without beginning
or end.
3. A negative sign in (ωt ± βz) is associated with a
wave propagating in the +z direction (forward
traveling or positive-going wave) whereas a positive
sign indicates that a wave is traveling in the —z
direction (backward traveling or negative going
wave).
4. Since sin (-ψ) = -sin ψ = sin (ψ ± π), Where
as cos(- ψ ) = cos ψ,
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----(10d)

----(10c)

----(10b)

----(10a)

Where ψ = ωt ± βz With eq. (10), any time-harmonic wave can be represented
in the form of sine or cosine.
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Wave Propagation in Lossy Dielectrics

A lossy dielectric is a medium in which an EM wave loses power as it propagates
due to poor conduction.

Consider a linear, isotropic, homogeneous, lossy dielectric medium that is charge free
(ρv = 0). Assuming and suppressing the time factor ejωt, Maxwell's equations becomes

----(11) ----(12) ----(13)

----(14)

----(15)

----(16)

----(17)

Taking the curl of both sides of eq. (13) gives

Applying the vector identity

to the left-hand side of eq. (15) and invoking eqs. (11) and (14), we obtain

or

Where ----(18)
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and γ is called the propagation constant (in per meter) of the medium. By a similar 
procedure, it can be shown that for the H field,

----(19)

Equations (17) and (19) are known as homogeneous vector Helmholtz 's equations or
simply vector wave equations. 
In Cartesian coordinates, eq. (17), for example, is equivalent to three scalar wave equations, 
one for each component of E along ax , ay , and az. Since γ in eqs. (17) to (19) is a complex 
quantity, we may let

----(20)
We obtain α and β from eqs. (18) and (20) by noting that

----(21)

and ----(22)

From eqs. (21) and (22), we obtain

----(23)

----(24)
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Without loss of generality, if we assume that the wave propagates along +az and that Es 

has only an x-component, then

or

----(27)

----(26) Hence

----(25)

Substituting this into eq. (17) yields

This is a scalar wave equation, a linear homogeneous differential equation, with solution

----(28)
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where Eo and E'o are constants. The fact that the field must be finite at infinity requires that 
E'o = 0. Alternatively, because eγz denotes a wave traveling along —az whereas we assume 
wave propagation along az, E'o = 0. Whichever way we look at it, E'o = 0. Inserting the time 
factor ejωt into eq. (28) and using eq. (20), we obtain

A sketch of |E| at times t = 0 and t = ∆t is portrayed in Figure , where it is evident that E
has only an x-component and it is traveling along the +z direction. Having obtained
E(z, t), we obtain H(z, t) either by taking similar steps to solve eq. (19) or by using eq. (29)
in conjunction with Maxwell's equations. We will eventually arrive at

And η is a complex quantity known as the intrinsic  
impedance (in ohms) of the medium. It can be shown by 
following the steps as

E-field with x-component traveling along +z
direction at times t = 0 and t = ∆t; arrows indicate
instantaneous values of E.

----(29)

----(30)

where ----(31)

----(32)
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----(33)

where  0< θn< 45°. Substituting eqs. (31) and (32) into eq. (30) gives

or ----(34)

Notice from eqs. (29) and (34) that as the wave propagates along az, it decreases or
attenuates in amplitude by a factor e-αz, and hence a is known as the attenuation
constant or attenuation factor of the medium. It is a measure of the spatial rate of
decay of the wave in the medium, measured in nepers per meter (Np/m) or in decibels
per meter (dB/m). An attenuation of 1 neper denotes a reduction to e-1 of the original
value whereas an increase of 1 neper indicates an increase by a factor of e. Hence, for
voltages

We also notice from eqs. (29) and (34) that E and H are out of phase by θn, at any
instant of time due to the complex intrinsic impedance of the medium. Thus at any
time, E leads H (or H lags E) by θn. Finally, we notice that the ratio of the magnitude of
the conduction current density J to that of the displacement current density Jd in a lossy
medium is

----(35)
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or ----(36)

where tanθ is known as the loss tangent and θ is the loss angle of the medium as
illustrated in Figure. Although a line of demarcation between good conductors and lossy
dielectrics is not easy to make, tanθ or θ may be used to determine how lossy a medium
is.
A medium is said to be a good (lossless or perfect) dielectric if tan θ is very small
(σ<<ωε) or a good conductor if tan θ is very large (σ>>ωε).
From the viewpoint of wave propagation, the characteristic behavior of a medium
depends not only on its constitutive parameters σ, ε and μ but also on the frequency
of operation.
A medium that is regarded as a good conductor at low frequencies may be a good
dielectric at high frequencies.



12/17/2016 G NAGENDRA PRASAD 13

PLANE WAVES IN LOSSLESS DIELECTRICS

In a lossless dielectric, σ<<ωε. We except that

----(37)

Substituting these into eqs. (23) and (24) gives

----(38a)

----(38b)

Also
----(39)

Thus E and H are in time phase with each other.
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PLANE WAVES IN FREE SPACE

This is a special case of what we considered

Thus we simply replace ε by εo and μ by μo in eq. (38) or we substitute eq. (40) directly 
into eqs. (23) and (24). Either way, we obtain

where c = 3 X 108 m/s, the speed of light in a vacuum. The fact that EM wave travels in
free space at the speed of light is significant. It shows that light is the manifestation of an
EM wave. In other words, light is characteristically electromagnetic.

----(40)

----(41b)

----(41a)

By substituting the constitutive parameters in eq. (40) into eq. (33), θn = 0 and η= η0

where η0 is called the intrinsic impedance of free space and is given by

----(42) and----(43a)

----(43b)
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The plots of E and H are shown in Figure (a). In general, if aE, aH, and ak are unit vectors 
along the E field, the H field, and the direction of wave propagation; 

or

(a) Plot of E and H as functions of z at t = 0;                                   

Both E and H fields (or EM waves) are everywhere normal to the direction of wave propagation, ak. That
means, the fields lie in a plane that is transverse or orthogonal to the direction of wave propagation.
They form an EM wave that has no electric or magnetic field components along the direction of
propagation; such a wave is called a transverse electromagnetic (TEM) wave. Each of E and H is called a
uniform plane wave because E (or H) has the same magnitude throughout any transverse plane, defined
by z = constant. The direction in which the electric field points is the polarization of a TEM wave. The
wave in eq. (29), for example, is polarized in the X direction. This should be observed in Figure (b),
where an illustration of uniform plane waves is given. A uniform plane wave cannot exist physically
because it stretches to infinity and would represent an infinite energy. However, such waves are
characteristically simple but fundamentally important. They serve as approximations to practical waves,
such as from a radio antenna, at distances sufficiently far from radiating sources. Although our
discussion after eq. (43) deals with free space, it also applies for any other isotropic medium.

(b) plot of E and H at z = 0. The arrows indicate instantaneous values.

or ----(44)
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PLANE WAVES IN GOOD CONDUCTORS

This is another special case. A perfect, or good conductor, is one in which σ>>ωε so that 
σ/ωε → ∞ that is, ----(45)

Hence, eqs. (23) and (24) become

----(46a)
----(46b)

Also

and thus E leads H by 45°. If 

----(47)

----(48a) then

----(48b)

Therefore, as E (or H) wave travels in a conducting medium, its amplitude is attenuated by 

the factor e-αz.

Illustration of skin depth.
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For good conductors eqs. (46a) and (49a) give

----(49b)

The distance δ, through which the wave amplitude decreases by a factor e-1 (about 37%) is 
called skin depth or penetration depth of the medium; that is

or

The skin depth is a measure of the depth to which an EM 
wave can penetrate the medium.

----(49a)



Poynting Theorem
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This theorem state that the total complex power fed in to volume is equal to

the algebraic sum of the active power dissipated as heat plus the reactive power

proportional to the difference between time average magnetic & electric energies stored in

the volume, plus the complex power transmitted across the surface enclosed by the

volume.

The  time average of any two complex vectors is equal to the real part of  the product of one 
complex vector multiplied by the complex conjugate of the other vector 
The time average of the instantaneous  Poynting vector in steady form is given by

-------(1)

Where       stands for average ½ represents complex power when peak values are used, & 
asterisk indicates complex conjugate.

The complex Poynting Vector  is defined as                                          ------(2)
Maxwell’s Equations in Frequency domain are given as follows

------(3)
-----(4) 
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Dot product of Eq (3) by H* & of conjugate of Eq (4) by E gives 
------(5)
------(6)

Subtracting (5) from (6) results as 
-----(7)

Where E.E* is replaced by | E |2 & H.H* is replaced by | H |2

LHS of Eq (7) is                      by vector identity. So we have 
-----(8)

Substituting Eq(2) & (5) in Eq (8) we have 

-----(9)
Integrating the above equation over the volume and applying Gauss Theorem to 
the last term on RHS gives

----(10)

The above equation is known as Complex Poynting Theorem, or Poynting theorem 
in frequency domain.
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Further

The above Equation is simplified as follows
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Uniform Plane Wave Reflection
Reflection of Uniform Plane wave is broadly classified in to two ways
Normal Incidence
Oblique Incidence.

Normal Incidence
The simplest case of reflection is normal incidence it is represented in the following figure.
In medium 1 the fields are the sum of  incident & reflected waves. So,

----(1)

----(2)
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In medium 2 there are only Transmitted waves

----(3)
----(4)

Oblique Incidence E is in the Plane of Incidence (Parallel polarization)

When ever a wave is incident obliquely on

the boundary surface between media, the
polarization of the wave is vertical or
horizontal if the electric field is normal or
parallel to boundary surface.

Figure shows a loss less dielectric medium.

The phase constant of the two media in x
direction on the interface are equal as
required by the continuity of tangential E

& H boundary
We have ---(5)

---(6)
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H is in the Plane of Incidence (Perpendicular polarization)

If H is in the plane of incidence the components of H are  

The components of Electric intensity E normal to plane of incidence  are 

The wave impedance in Z direction is given by 



UNIT 4 & 5
Transmission Lines I & II
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TRANSMISSION LINES
In an electronic system, the delivery of power requires the connection of two wires
between the source and the load. At low frequencies, power is considered to be
delivered to the load through the wire.

In the microwave frequency region, power is considered to be in electric and
magnetic fields that are guided from place to place by some physical structure. Any
physical structure that will guide an electromagnetic wave place to place is called a
Transmission Line.

Types of Transmission Lines

1. Two wire line
2. Coaxial cable
3. Waveguide
 Rectangular
 Circular

4. Planar Transmission Lines
 Strip line
 Micro strip line
 Slot line
 Fin line
 Coplanar Waveguide
 Coplanar slot line
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Transmission lines are commonly used in power distribution (at low frequencies) and in
communications (at high frequencies). Various kinds of transmission lines such as the
twisted-pair and coaxial cables (thinnet and thicknet) are used in computer networks such
as the Ethernet and Internet.

A transmission line basically consists of two or more parallel conductors used to connect
a source to a load. The source may be a hydroelectric generator, a transmitter, or an
oscillator; the load may be a factory, an antenna, or an oscilloscope, respectively. Typical
transmission lines include coaxial cable, a two-wire line, a parallel-plate or planar line, a
wire above the conducting plane, and a microstrip line.

Figure: Cross-sectional
view of typical
transmission lines: (a)
coaxial line, (b) two-wire
line, (c) planar line, (d)
wire above conducting
plane, (e) microstrip line.
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At low frequencies, the circuit elements are
lumped since voltage and current waves affect the entire
circuit at the same time.

At microwave frequencies, such treatment of
circuit elements is not possible since voltage and current
waves do not affect the entire circuit at the same time.

The circuit must be broken down into unit sections
within which the circuit elements are considered to be
lumped. This is because the dimensions of the circuit are
comparable to the wavelength of the waves according to
the formula:

l = c/f
where,
c = velocity of light
f = frequency of voltage/current
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Electrical Dimensions, Circuit and Field Analysis

TRANSMISSION LINE PARAMETERS

• It is convenient to describe a transmission line in terms of

its line parameters, which are its resistance per unit length

R, inductance per unit length L, conductance per unit

length G, and capacitance per unit length C.

• Each of the lines has specific formulas for finding R, L,

G, and C. For coaxial, two-wire, and planar lines, the

formulas for calculating the values of R, L, G, and C are

provided in Table. The dimensions of the lines are also

shown
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Distributed Line Parameters at High Frequencies

Figure:  Common transmission 
lines: (a) coaxial line, (b) two-wire
line, (c) planar line.
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1. The line parameters R, L, G, and C are not discrete or lumped but distributed as shown in
Figure. By this we mean that the parameters are uniformly distributed along the entire
length of the line.

3. For each line, the conductors are characterized by σc µc εc= εo, and the homogeneous
dielectric separating the conductors is characterized by σ, µ, ε.
4. G ≠1/R; R is the ac resistance per unit length of the conductors comprising the line and
G is the conductance per unit length due to the dielectric medium separating the
conductors.
5. The value of L shown in Table is the external inductance per unit length; that is, L =
Lext. The effects of internal inductance Lin (= R/ω) are negligible as high frequencies at
which most communication systems operate.

2.For Each Line

and

LC = με
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let us consider how an EM wave propagates through a two-conductor transmission line. 
For example, consider the coaxial line connecting the generator or source to the load as 
in Figure (a) . When switch S is closed, the inner 

The Poynting vector (E X H) points along
the transmission line. Thus, closing the
switch simply establishes a disturbance,
which appears as a transverse
electromagnetic (TEM) wave propagating
along the line. This wave is a non uniform
plane wave and by means of it, power is
transmitted through the line.

conductor is made positive with respect
to the outer one so that the E field is
radially outward as in Figure (b).
According to Ampere's law, the H field
encircles the current carrying conductor
as in Figure (b).

(b) E and H fields on the coaxial line.

(a) Coaxial line connecting the generator to the load
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TRANSMISSION LINE EQUATIONS (lossy type) 
For conductors(σc ≠∞), For dielectric (σ≠ 0). 

As mentioned, a two-conductor transmission line supports a TEM wave; that is,
the electric and magnetic fields on the line are transverse to the direction of wave
propagation. An important property of TEM waves is that the fields E and H are
uniquely related to voltage V and current I, respectively:

Let us examine an incremental portion of length Δz of a two-conductor transmission line. 
We intend to find an equivalent circuit for this line and derive the line equations.

We expect the equivalent circuit of a portion of the line to be as in Figure above. The model
in Figure is in terms of the line parameters R, L, G, and C, and may represent any of the
two-conductor lines. The model is called the L-type equivalent circuit; there are other
possible types. In the model of Figure, we assume that the wave propagates along the +z-
direction, from the generator to the load.

------- (1)



Taking the limit of eq. (2) as Δz --> 0 leads to

By applying Kirchhoff's voltage law to the outer loop of the circuit in Figure, we
obtain

or ------- (2)

Similarly, applying Kirchhoff's current law to the main node of the circuit in Figure gives

or

------- (3)

------- (4)

As Δz —> 0, eq. (4) becomes

------- (5)
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If we assume harmonic time dependence so that

------- (6b)

------- (6a)

where Vs(z) and Is(z) are the phasor forms of V(z, t) and I(z, t), respectively, eqs. (3) and
(5) become

------- (7)

------- (8)

In the differential eqs. (7) and (8), Vs and Is are coupled. To separate them, we take
the second derivative of Vs in eq. (7) and employ eq. (8) so that we obtain

or ------- (9)

Where

Similarly

------- (10)

------- (11)
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We notice that eqs. (9) and (11) are, respectively, the wave equations for voltage and
current similar in form to the wave equations obtained for plane waves. Thus, in our usual
notations, ϒ in eq. (10) is the propagation constant , α is the attenuation constant (in
nepers per meter or decibels2 per meter), and β is the phase constant (in radians per
meter). The wavelength λ and wave velocity u are, respectively, given by

------- (12)

------- (13)

The solutions of the linear homogeneous differential equations (9) and (11) are

------- (14)

------- (15)

where Vo
+, Vo

-, Io
+, and Io

- are wave amplitudes; the + and — signs, respectively, denote
wave traveling along +z and –z directions, as is also indicated by the arrows. Thus, we
obtain the instantaneous expression for voltage as

------- (16)

12/17/2016 12G NAGENDRA PRASAD



Zo is analogous to η, the intrinsic impedance of the medium of wave propagation. By 
substituting eqs. (14) and (15) into eqs. (7) and (8) and equating coefficients of terms e ϒz

and e -ϒz, we obtain

------- (17)

------- (18)

where Ro and Xo are the real and imaginary parts of Zo. The propagation
constant ϒ and the characteristic impedance Zo are important properties of the line
because they both depend on the line parameters R, L, G, and C and the frequency of
operation. The reciprocal of Zo is the characteristic admittance Yo, that is, Yo = 1/ZO.

The transmission line considered so far the lossy type in that the conductors 
comprising the line are imperfect (σc ≠∞) and the dielectric in which the conductors are 
embedded is lossy (σ≠ 0). Having considered this general case, we may now consider 
two special cases of lossless transmission line and distortion less line.
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The characteristic impedance Zo of the line is the ratio of positively traveling voltage
wave to current wave at any point on the line or negatively traveling voltage wave to
current wave at any point on the line .

Characteristic impedance of a Transmission Line (Zo ) 



Lossless Line (R = 0 = G)
A transmission line is said lo be lossless if the conductors of the line are perfect
(σc =∞) and the dielectric medium separating them is lossless (σ= 0). 

R = 0 = G ------- (19)

This is a necessary condition for a line to be lossless. Thus for such a line, eq. (19)
forces eqs. (10), (13), and (18) to become

------- (20a)

------- (20b)

------- (20c)
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Distortion less Line (R/L = G/C)
A signal normally consists of a band of frequencies; wave amplitudes of

different frequency components will be attenuated differently in a lossy line as α is
frequency dependent. This results in distortion.

A distortion less line is one in which the attenuation constant α is frequency
independent while the phase constant β is linearly dependent on frequency. From the
general expression for α and β [in eq. (10)], a distortion less line results if the line
parameters are such that

R/L = G/C ------- (21)

Thus, for a distortion less line,

or ------- (22a)
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Note that
1. The phase velocity is independent of frequency because the phase constant β
Linearly depends on frequency. We have shape distortion of signals unless α and u are
independent of frequency.
2. u and Zo remain the same as for lossless lines.
3. A lossless line is also a distortion less line, but a distortion less line is not necessarily
lossless. Although lossless lines are desirable in power transmission, telephone lines
are required to be distortion less.

Also we have

------- (22c)

------- (22b)
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Transmission Line Characteristics

NOTE:
For our analysis, we shall restrict our discussion to lossless transmission lines.
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INPUT IMPEDANCE, SWR, AND POWER

Consider a transmission line of length , characterized by ϒ and Zo, connected
to a load ZL as shown in Figure. Looking into the line, the generator sees the line with
the load as an input impedance Zin. It is our intention to determine the input
impedance, the standing wave ratio (SWR), and the power flow on the line.

Let the transmission line extend from z = 0 at the generator to z = at the
load. First of all, we need the voltage and current waves in eqs. (14) and (15), that is

------- (23)

------- (24)

where eq. (17) has been incorporated. To find Vo 
- and Vo 

+, the terminal conditions must be given. 

Ξ

Figure (a) Input impedance due to a line terminated by a load;
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(b) equivalent circuit for finding Vo 

and Io in terms of Zin at the input.
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If we are given the conditions at the input,

------- (26b)

------- (26a)

------- (25)

substituting these into eqs. (23) and (24) results in

If the input impedance at the input terminals is Zin, the input voltage Vo and the input
current Io are easily obtained from Figure (b) as

On the other hand, if we are given the conditions at the load, say

Substituting these into eqs. (23) and (24) gives

------- (27)

------- (28)

------- (29a)

------- (29b)
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Next, we determine the input impedance Zin = Vs(z) / Is(z) at any point on the line. At
the generator, for example, eqs. (23) and (24) yield

Substituting eq. (29) into (30) and utilizing the fact that

or

------- (30)

------- (31)we get (lossy) ------- (32)

Although eq. (32) has been derived for the input impedance Zin at the generation end, it
is a general expression for finding Zin at any point on the line.
For a lossless line, y = jβ, tanh jβ = jtanβ , and Zo = Ro, so eq. (32) becomes

(lossless)
------- (33)

showing that the input impedance varies periodically with distance from the load. The
Quantity β in eq. (33) is usually referred to as the electrical length of the line and can be
expressed in degrees or radians.

We now define ГL as the voltage reflection coefficient (at the load). ГL is the ratio of
the voltage reflection wave to the incident wave at the load, that is,

------- (34)
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Substituting Vo
- and Vo

+ m eq. (29) into eq. (34) and incorporating VL = ZL IL gives

------- (35)

The voltage reflection coefficient at any point on the line is the ratio of the magnitude
of the reflected voltage wave to that of the incident wave.

But z =  - '. Substituting and combining with eq. (34), we get

The current reflection coefficient at any point on the line is negative of the voltage
reflection coefficient at that point.

Thus, the current reflection coefficient at the load is   

we define the standing wave ratio s (SWR) as

------- (36)

------- (37)

=
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It is easy to show that Imax = Vmax/Zo and Imin = Vmin/Zo. The input impedance Zin in eq. (33)
has maxima and minima that occur, respectively, at the maxima and minima of the
voltage and current standing wave. It can also be shown that

and ----- (38b)----- (38a)

As a way of demonstrating

these concepts, consider a lossless line
with characteristic impedance of Zo =
50Ω. For the sake of simplicity, we
assume that the line is terminated in a
pure resistive load ZL = 100Ω and the
voltage at the load is 100 V (rms). The
conditions on the line are displayed in
Figure . Note from the figure that
conditions on the line repeat

themselves every half wavelength.

Voltage and current wave patterns on a lossless 

line terminated by a resistive load.
G NAGENDRA PRASAD
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A transmission line is used in transferring power from the source to the load. The 
average input power at a distance   from the load is given by

where the factor 1/2 is needed since we are dealing with the peak values instead of the 
rms values. Assuming a lossless line, we substitute eqs. (23) and (24) to obtain

Since the last two terms are purely imaginary, we have

The first term is the incident power Pi , while the second term is the reflected power
Pr. Thus eq. (39) may be written as Pt = Pi — Pr

where Pt is the input or transmitted power and the negative sign is due to
the negative going wave since we take the reference direction as that of the
voltage/current traveling toward the right. We should notice from eq. (39) that the
power is constant and does not depend on since it is a lossless line. Also, we should
notice that maximum power is delivered to the load when ϒ = 0, as expected.

----- (39)
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We now consider special cases when the line is connected to load ZL = 0, ZL =∞,
and ZL = Zo. These special cases can easily be derived from the general case.

Shorted Line (ZL = 0)

For this case, eq. (33) becomes

Also

----- (40a)

We notice from eq. (40) that Zin is a
pure reactance, which could be
capacitive or inductive depending on
the value of . The variation of Zin with
is shown in Figure (a).

----- (40b)
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Open-Circuited Line (ZL =∞)

In this case, eq. (33) becomes

and

----- (41b)

----- (41a)

The variation of Zin with  is shown in Figure (b). Notice from eqs. (40a) and (41a) that

----- (42)

Matched Line (ZL = Zo)

This is the most desired case from the practical point of view. For this case, eq. (33)
reduces to

----- (43a) ----- (43b)and

that is, Vo = 0, the whole wave is transmitted and there is no reflection. The incident
power is fully absorbed by the load. Thus maximum power transfer is possible when a
transmission line is matched to the load.
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THE SMITH CHART
Prior to the advent of digital computers and calculators, engineers developed all

sorts of aids (tables, charts, graphs, etc.) to facilitate their calculations for design and
analysis.

To reduce the tedious manipulations involved in calculating the characteristics of
transmission lines, graphical means have been developed. The Smith chart is the most
commonly used of the graphical techniques. It is basically a graphical indication of the
impedance of a transmission line as one moves along the line. It becomes easy to use after a
small amount of experience. We will first examine how the Smith chart is constructed and
later employ it in our calculations of transmission line characteristics such as ΓL, s, and Zin.
We will assume that the transmission line to which the Smith chart will be applied is lossless
(Zo = Ro) although this is not fundamentally required.

The Smith chart is constructed within a circle of unit 
radius (| Γ | ≤ 1) as shown in Figure. The construction 
of the chart is based on the relation in eq. 35 that is,

=

or

where Γr and Γi, are the real and imaginary parts of the reflection coefficient Γ.

----- (44)

----- (45)
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Instead of having separate Smith charts for transmission lines with different characteristic
impedances such as Zo = 60,100, and 120 Ω, we prefer to have just one that can be used
for any line. We achieve this by using a normalized chart in which all impedances are
normalized with respect to the characteristic impedance Zo of the particular line under
consideration. For the load impedance ZL, for example, the normalized impedance ZL is
given by

Substituting eq. (46) into eqs. (44) and (45) gives

----- (46)

----- (47a)

----- (47b)

or

Normalizing and equating components, we obtain

Rearranging terms in eq. (48) leads to

----- (48a) ----- (48b)

----- (49)
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and ----- (50)

Each of eqs. (49) and (50) is similar to ----- (51)

which is the general equation of a circle of radius a, centered at (h, k). Thus eq. (49) 
is an r-circle (resistance circle) with

----- (52a) ----- (52b)

For typical values of the normalized resistance r, the corresponding centers and radii of
the r-circles are presented in Table. Typical examples of the r-circles based on the data in
Table are shown in Figure. Similarly, eq. (50) is an x-circle (reactance circle) with

----- (53b)

----- (53a)
Typical r-circles for r = 0,0.5, 1,2, 5, ∞
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Table below presents centers and radii of the x-circles for typical values of x, and Figure
below shows the corresponding plots. Notice that while r is always positive, x can be
positive (for inductive impedance) or negative (for capacitive impedance).

If we superpose the r-circles and x-circles, what we have is the Smith chart shown in Figure in
next slide on the chart, we locate a normalized impedance z = 2 + j , for example, as the point
of intersection of the r = 2 circle and the x = 1 circle. This is point P1 in Figure. Similarly,
z = 1 - j0.5 is located at P2, where the r = 1 circle and the x = -0.5 circle intersect.

Typical x circles for x = 0, ± 1/2, ±1, ±2, ±5, ±∞.
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Apart from the r- and x-circles (shown on the Smith chart), we
can draw the S-circles or constant standing-wave-ratio circles (always
not shown on the Smith chart), which are centered at the origin with
s varying from 1 to ∞. The value of the standing wave ratio s is
determined by locating where an s-circle crosses the Гr axis. Typical
examples of S circles for S = 1,2, 3, and ∞ are shown in Figure. Since
|Г| and S are related according to eq. (37), the S circles are
sometimes referred to as |Г|-circles with |Г| varying linearly from 0
to 1 as we move away from the center O toward the periphery of the
chart while s varies nonlinearly from 1 to ∞.

The following points should be noted about the Smith chart:

1. At point Psc on the chart r = 0, x = 0; that is, ZL = 0 + j0 showing
that Psc represents a short circuit on the transmission line. At point
Poc, r = ∞ and x = ∞ or ZL = ∞ +j∞, which implies that Poc

corresponds to an open circuit on the line. Also at Poc, r = 0 and x =
0, showing that Poc is another location of a short circuit on the line.
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2. A complete revolution (360°) around the Smith chart represents a distance of
λ/2 on the line. Clockwise movement on the chart is regarded as moving toward
the generator (or away from the load) as shown by the arrow G in Figure (a) and
(b). Similarly, counterclockwise movement on the chart corresponds to moving
toward the load (or away from the generator) as indicated by the arrow L in
Figure. Notice from Figure that at the load, moving toward the load does not
make sense (because we are already at the load). The same can be said of the
case when we are at the generator end.

(a) Smith chart illustrating scales around the
periphery and movements around the chart,
(b) corresponding movements along the
transmission line.

(a) 

(b) 
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3. There are three scales around the periphery of the Smith chart
as illustrated in Figure. The three scales are included for the sake
of convenience but they are actually meant to serve the same
purpose; one scale should be sufficient. The scales are used in
determining the distance from the load or generator in degrees or
wavelengths. The outermost scale is used to determine the
distance on the line from the generator end in terms of
wavelengths, and the next scale determines the distance from the
load end in terms of wavelengths. The innermost scale is a
protractor (in degrees) and is primarily used in determining θГ; it
can also be used to determine the distance from the load or
generator. Since a λ/2 distance on the line corresponds to a
movement of 360° on the chart, A distance on the line
corresponds to a 720° movement on the chart. λ→720o

Thus we may ignore the other outer scales and use the protractor (the innermost scale) 
for all our θГ and distance calculations.
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4. Vmax occurs where Zinmax is located on the chart [see eq.
(38a)], and that is on the positive Гr axis or on OPOC in
Figure . Vmin is located at the same point where we have
Zin min on the chart; that is, on the negative Гr axis or on
OPsc in Figure . Notice that Vmax and Vmin (orZinmax and
Zinmin) are λ/4 (or 180°) apart.

5.The Smith chart is used both as impedance
chart and admittance chart (Y = 1/Z). As
admittance chart (normalized impedance y =
YIYO = g + jb), the g- and b circles correspond to
r- and x-circles, respectively.
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Based on these important properties, the
Smith chart may be used to determine,
among other things, (a) Г = |Г| LθГ and s;
(b) Zin or Yin; and (c) the locations of Vmax and
Vmin provided that we are given Zo, ZL, and
the length of the line. Some examples will
clearly show how we can do all these and
much more with the aid of the Smith chart,
a compass, and a plain straightedge.
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TRANSIENTS ON TRANSMISSION LINES

In circuit analysis, when a pulse generator or battery connected to a transmission line is
switched on, it takes some time for the current and voltage on the line to reach steady
values. This transitional period is called the transient. The transient behavior just after
closing the switch (or due to lightning strokes) is usually analyzed in the frequency domain
using Laplace transform. For the sake of convenience, we treat the problem in the time
domain.

Consider a lossless line of length and characteristic impedance Zo as shown in Figure (a).
Suppose that the line is driven by a pulse generator of voltage Vg with internal impedance
Zg at z = 0 and terminated with a purely resistive load ZL. At the instant t = 0 that the
switch is closed, the starting current "sees" only Zg and Zo, so the initial situation can be
described by the equivalent circuit of Figure (b). From the figure, the starting current at
z = 0, t = 0+ is given by

Figure :Transients on a transmission line: (a) a line driven by a pulse generator, (b) the equivalent circuit at z = 0, t = 0+.

---(1)
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and the initial voltage is ---(2)

After the switch is closed, waves I+ = Io and V+ = Vo propagate toward the load at the speed

---(3)

Since this speed is finite, it takes some time for the positively traveling waves to reach the
load and interact with it. The presence of the load has no effect on the waves before the
transit time given by

---(4)

After t1 seconds, the waves reach the load. The voltage (or current) at the load is the sum
of the incident and reflected voltages (or currents). Thus

and

---(5)

---(6)

where ГL is the load reflection coefficient given that is,

The reflected waves V -= ГL Vo and I-= — ГL Io travel back toward the generator in addition
to the waves Vo and Io already on the line. At time t = 2t1 the reflected waves have
reached the generator, so ---(7)
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or

and

or

where ГG is the generator reflection coefficient given by

Again the reflected waves (from the generator end) V+ = ГG ГL VO and I+ = ГG ГL IO

propagate toward the load and the process continues until the energy of the pulse is
actually absorbed by the resistors Zg and ZL.

Instead of tracing the voltage and current waves back and forth, it is easier to
keep track of the reflections using a bounce diagram, otherwise known as a lattice
diagram. The bounce diagram consists of a zigzag line indicating the position of the
voltage (or current) wave with respect to the generator end as shown in Figure. On the
bounce diagram, the voltage (or current) at any time may be determined by adding
those values that appear on the diagram above that time.
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Figure : Bounce diagram for (a) a voltage wave, and (b) a current wave.


